Question 79

If $$f(x) = \frac{1}{1+x}$$, then find the value of $$f[f[f(x)]]$$, at x=5

Solution

$$f(x) = \frac{1}{1+x}$$

$$f[f(x)]$$ = $$\frac{1}{1+f(x)}$$ = $$\frac{1}{1+\frac{1}{1+x}}$$= $$\frac{1+x}{2+x}$$

$$f[f[f(x)]]$$ = $$\frac{1}{1+f{f(x)}}$$=$$\frac{1}{1+\frac{1+x}{2+x}}$$=$$\frac{2+x}{3+2x}$$

$$f[f[f(x)]]$$=$$\frac{2+5}{3+2*5}$$= $$\frac{7}{13}$$

Video Solution

video

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App