Question 54

What is the value of 

$$[\tan^2 (90 - \theta) - \sin^2 (90 - \theta)] \cosec^2 (90 - \theta) \cot^2 (90 - \theta)?$$

Solution

$$[(\sin^2 (90 - \theta)/\cos^2 (90 - \theta)) - \sin^2 (90 - \theta)] \cos^2 (90 - \theta) /(\sin^4 (90 - \theta))$$

=$$(\sin^2 (90 - \theta)(1-\cos^2 (90 - \theta)/(\cos^2 (90 - \theta))) \cos^2 (90 - \theta) /(\sin^4 (90 - \theta))$$

$$(1-\cos^2 (90 - \theta)$$=$$\sin^2 (90 - \theta)$$

=$$(\sin^4 (90 - \theta)(\cos^2 (90 - \theta)/( \cos^2 (90 - \theta) /(\sin^4 (90 - \theta)))$$

=1


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App