What is the value ofÂ
$$[\tan^2 (90 - \theta) - \sin^2 (90 - \theta)] \cosec^2 (90 - \theta) \cot^2 (90 - \theta)?$$
$$[(\sin^2 (90 - \theta)/\cos^2 (90 - \theta)) - \sin^2 (90 - \theta)] \cos^2 (90 - \theta) /(\sin^4 (90 - \theta))$$
=$$(\sin^2 (90 - \theta)(1-\cos^2 (90 - \theta)/(\cos^2 (90 - \theta)))Â \cos^2 (90 - \theta) /(\sin^4 (90 - \theta))$$
$$(1-\cos^2 (90 - \theta)$$=$$\sin^2 (90 - \theta)$$
=$$(\sin^4 (90 - \theta)(\cos^2 (90 - \theta)/(Â \cos^2 (90 - \theta) /(\sin^4 (90 - \theta)))$$
=1
Create a FREE account and get: