For the following questions answer them individually
What is the unit digit of the sum of first 111 whole numbers?
How many 100 digit positive number are there?
What is the value of $$\frac{5.6 \times 0.36 + 0.42 \times 3.2}{0.8 \times 2.1}$$?
What is the value of $$\frac{(1.2)^3 + (0.8)^3 + (0.7)^3 - 2.016}{1.35[(1.2)^2 + (0.8)^2 + (0.7)^2 - 0.96 - 0.84 - 0.56]}$$ ?
What is the unit digit of $$(217)^{413} \times (819)^{547} \times (414)^{624} \times (342)^{812}$$?
What is the value of $$S = \frac{1}{1 \times 3 \times 5} + \frac{1}{1 \times 4} + \frac{1}{3 \times 5 \times 7} +Â \frac{1}{4 \times 7} +Â \frac{1}{5 \times 7 \times 9 } +Â \frac{1}{7 \times 10}+.....$$upto 20 terms, then what is the value of S?
Which of the following is TRUE?
$$I. \frac{1}{\sqrt[3]{12}} > \frac{1}{\sqrt[4]{29}} > \frac{1}{\sqrt{5}}$$
$$II. \frac{1}{\sqrt[4]{29}} > \frac{1}{\sqrt[3]{12}} > \frac{1}{\sqrt{5}}$$
$$III. \frac{1}{\sqrt{5}} > \frac{1}{\sqrt[3]{12}} > \frac{1}{\sqrt[4]{29}}$$
$$IV.  \frac{1}{\sqrt{5}} > \frac{1}{\sqrt[4]{29}} > \frac{1}{\sqrt[3]{12}}$$
N is the largest two digit number, which when divided by 3, 4 and 6 leaves the remainder 1, 2 and 4 respectively. What is the remainder when N is divided by 5?
Which of the following is TRUE?
$$I. \sqrt[3]{11} > \sqrt{7} > \sqrt[4]{45}$$
$$II. \sqrt{7} > \sqrt[3]{11} > \sqrt[4]{45}$$
$$III. \sqrt{7} > \sqrt[4]{45} > \sqrt[3]{11}$$
$$IV. \sqrt[4]{45} > \sqrt{7} > \sqrt[3]{11}$$
A and B are positive integers. If $$A + B + AB = 65$$, then what is the difference between $$A$$ and $$B (A, B \leq 15)?$$