Question 45

If the diameter of the base of a right circular cylinder is reduced by $$33\frac{1}{3}\%$$ and its height is doubled, then the volume of the cylinder will:

Solution

Let the radius be r.
Intently volume of right circular cylinder = $$\pi r^2 h$$
Final volume of right circular cylinder = $$\pi (r - \frac{r}{3})^2 \times 2h$$ = $$ \frac{8}{9} \pi r^2 h$$
Decrement = $$\pi r^2 h - \frac{8}{9} \pi r^2 h =  \frac{1}{9} \pi r^2 h$$
Percentage decrement = $$\frac{\frac{1}{9} \pi r^2 h}{\pi r^2 h} \times 100$$ = $$11\frac{1}{9}\%$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App