Question 87

 if a+$$\frac{1}{b}$$ =b+$$\frac{1}{c}$$=c+$$\frac{1}{a}$$ where as    abc0  then the  value of  $$a^{2}b^{2}c^{2}$$ is

Solution

Given,       $$a+\ \frac{\ 1}{b}=b+\ \frac{\ 1}{c}=c+\ \frac{\ 1}{a}$$

            Take     $$a+\ \frac{\ 1}{b}=b+\ \frac{\ 1}{c}$$

                            $$a-b=\frac{\ 1}{c}-\ \frac{\ 1}{b}$$

                           $$a-b=\ \ \frac{\ b-c}{bc}$$ .................(1)

            Take      $$b+\frac{\ 1}{c}=c+\ \frac{\ 1}{a}$$

                          $$b-c=\ \frac{\ 1}{a}\ -\ \ \frac{\ 1}{c}$$

                          $$b-c=\ \ \frac{\ c-a}{ca}$$ ...................(2)

            Take      $$c+\frac{\ 1}{a}=a+\ \frac{\ 1}{b}$$

                        $$c-a=\ \frac{\ 1}{b}\ -\ \ \frac{\ 1}{a}$$

                        $$c-a=\ \ \frac{\ a-b}{ab}$$ ....................(3)

Multiplying the three equations we get

$$\left(a-b\right)\left(b-c\right)\left(c-a\right)=\ \frac{\ b-c}{bc}\times\ \ \frac{\ c-a}{ca}\times\ \ \frac{\ a-b}{ab}$$

$$=$$>       bc. ca. ab $$=$$ 1

 $$=$$>        $$a^2b^2c^2=1$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App