if a+$$\frac{1}{b}$$ =b+$$\frac{1}{c}$$=c+$$\frac{1}{a}$$ where as a≠b≠c≠0 then the value of $$a^{2}b^{2}c^{2}$$ is
Given, $$a+\ \frac{\ 1}{b}=b+\ \frac{\ 1}{c}=c+\ \frac{\ 1}{a}$$
Take $$a+\ \frac{\ 1}{b}=b+\ \frac{\ 1}{c}$$
$$a-b=\frac{\ 1}{c}-\ \frac{\ 1}{b}$$
$$a-b=\ \ \frac{\ b-c}{bc}$$ .................(1)
Take $$b+\frac{\ 1}{c}=c+\ \frac{\ 1}{a}$$
$$b-c=\ \frac{\ 1}{a}\ -\ \ \frac{\ 1}{c}$$
$$b-c=\ \ \frac{\ c-a}{ca}$$ ...................(2)
Take $$c+\frac{\ 1}{a}=a+\ \frac{\ 1}{b}$$
$$c-a=\ \frac{\ 1}{b}\ -\ \ \frac{\ 1}{a}$$
$$c-a=\ \ \frac{\ a-b}{ab}$$ ....................(3)
Multiplying the three equations we get
$$\left(a-b\right)\left(b-c\right)\left(c-a\right)=\ \frac{\ b-c}{bc}\times\ \ \frac{\ c-a}{ca}\times\ \ \frac{\ a-b}{ab}$$
$$=$$> bc. ca. ab $$=$$ 1
$$=$$> $$a^2b^2c^2=1$$
Create a FREE account and get: