Question 8

An investor lent-out a certain sum on simple interest and the same sum on compound interest at the same rate of interest per annum. He noticed that the ratio of the difference of the compound interest and the simple interest for 4 years to the difference of the compound interest and the simple interest for 3 years is 20:8. The approximate rate of interest per annum is given by,

Solution

Let '$$p$$' be the principal amount and '$$r$$' be the interest rate per annum.

Simple Interest for t years = $$ptr$$

Compound Interest for t years = $$p\left(1+r\right)^t-p$$

From the given information,

$$\frac{\left(p\left(1+r\right)^4-p\right)-4pr}{\left(p\left(1+r\right)^3-p\right)-3pr}=\frac{20}{8}$$

$$\frac{\left(\left(1+r\right)^4-1\right)-4r}{\left(\left(1+r\right)^3-1\right)-3r}=\frac{5}{2}$$

$$2\times\ \left(\left(1+r\right)^4-1-4r\right)=5\times\ \left(\left(1+r\right)^3-1-3r\right)$$

$$2\times\ \left(1+r\right)^4-2-8r=5\times\ \left(1+r\right)^3-5-15r$$

$$2\times\ \left(1+r\right)^4=5\times\ \left(1+r\right)^3-3-7r$$

$$\ 2r^4+8r^3+12r^2+8r+2=\ 5r^3+15r^2+15r+5-3-7r$$

$$\ 2r^4+8r^3+12r^2=\ 5r^3+15r^2$$

$$\ 2r^2+3r-3=0$$

Hence, $$r=\frac{-3\pm\ \sqrt{\ 9+24}}{2\times\ 2}$$

$$r=\frac{-3\pm\ \sqrt{\ 33}}{4}$$

As interest rate cannot be negative,

$$r=\frac{-3+\ \sqrt{\ 33}}{4}$$ 

$$r=0.6861$$

Hence, the approximate value of $$r=69\%$$

Option (A) is correct.

Your Doubts

Ask a Doubt (know more)

Drop Your File Here!

** You can Drag and Drop an Image in the above textarea
add image

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App