If $$a^2 + b^2 + c^2 = 16, x^2 + y^2 + z^2 = 25 and ax + by + cz = 20$$, then the value of $$\frac{a + b + c}{x + y + z}$$
$$a^2 + b^2 + c^2 = 16, x^2 + y^2 + z^2 = 25 and ax + by + cz = 20$$
let a = 0, b= 0 ,x=0,y=0
we get
$$0^2 + 0^2 + c^2 = 16 , c^2 = 16 , c= 4 $$
$$ 0^2 + 0^2 + z^2 = 25Â , z^2 = 25 ,z=5 $$
putting value of c and z
 $$ 0x + 0y + cz = 20 $$
satisfy the above equation
putting the valuesÂ
$$\frac{a + b + c}{x + y + z}$$ =Â $$\frac{0 + 0 + 4}{0 + 0 + 5}$$
$$\frac{4}{5}$$
Create a FREE account and get: