Question 72

If $$a^2 + b^2 + c^2 = 16, x^2 + y^2 + z^2 = 25  and  ax + by + cz = 20$$, then the value of $$\frac{a + b + c}{x + y + z}$$

Solution

$$a^2 + b^2 + c^2 = 16, x^2 + y^2 + z^2 = 25  and  ax + by + cz = 20$$

let a = 0, b= 0 ,x=0,y=0

we get

$$0^2 + 0^2 + c^2 = 16 , c^2 = 16 , c= 4 $$

$$ 0^2 + 0^2 + z^2 = 25  , z^2 = 25 ,z=5 $$

putting value of c and z

 $$ 0x + 0y + cz = 20 $$

satisfy the above equation

putting the values 

$$\frac{a + b + c}{x + y + z}$$ = $$\frac{0 + 0 + 4}{0 + 0 + 5}$$

$$\frac{4}{5}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App