If $$ 3 ( a^2Â + b^2Â + c^2)Â = ( a + b + c)^2Â $$, then the relation between a,b and c is
solution
$$ 3 ( a^2Â + b^2Â + c^2)Â = ( a + b + c)^2Â $$
we knowÂ
$$( a + b + c)^2 = a^2Â + b^2Â + c^2 +2(ab +bc +ca)$$
$$3 ( a^2Â + b^2Â + c^2) =Â a^2Â + b^2Â + c^2 +2(ab +bc +ca)$$
$$2 ( a^2Â + b^2Â + c^2)Â = 2(ab +bc +ca)$$
$$ ( a^2Â + b^2Â + c^2)Â = (ab +bc +ca)$$
as we can observe the symmetryÂ
$$a= b = c$$
Create a FREE account and get: