If $$ (x^{3}-y^{3}):(x^{2}+xy+y^{2})$$=5:1 and  $$(x^{2}-y^{2}):(x-y)$$=7:1 then the value of 2x:3y equals
Given, Â Â Â Â Â $$\ \frac{\ x^3-y^3}{x^2+xy+y^2}=\ \frac{\ 5}{1}$$
    $$\ \frac{\ \left(x-y\right)\left(x^2+xy+y^2\right)}{x^2+xy+y^2}=\ \frac{\ 5}{1}$$
             $$\ \ x-y=\ \ 5$$ .................(1)
and          $$\ \frac{\ x^2\ -\ y^2}{x-y}=\ \frac{\ 7}{1}$$
         $$\ \frac{\ \left(x+y\right)\left(x-y\right)}{x-y}=\ \frac{\ 7}{1}$$
            $$\ \ x+y=\ \ 7$$ .................(2)
Adding both the equations we get
                2$$x$$ $$=$$ 12
                 $$x$$ $$=$$ 6
From equation (1) Â $$x-y=5$$Â Â
                  $$6-y=5$$
           $$=$$>        $$y=1$$
Therefore     $$2x:3y=2\times\ 6:3\times\ 1=12:3=4:1$$
               Â
             Â
Create a FREE account and get: