Solve the numerator,
⇒ cos 40° - cos140° = - 2 sin[(140° + 40°)/2] × sin[(40° - 140°)/2]
⇒ cos 40° - cos140° = 2 sin[(140° + 40°)/2] × sin[(140° - 40°)/2]
⇒ cos 40° - cos 140° = 2sin90°.sin50°
⇒ cos 40° - cos 140° = 2sin50°
Solve the denominator,
sin 80° + sin 20° = 2 sin[(80° + 20°)/2] × cos[(80° - 20°)/2]
⇒ sin 80° + sin 20° = 2sin50°.cos30°
⇒ sin80° + sin20° = 2sin50° × (√3/2)
Replacing the respective value in the given equation:
(cos40° - cos140°)/(sin80° + sin20°) = (2sin50°)/(2sin50° × √3/2) = 2/√3
B is correct choice.
Create a FREE account and get: