For the following questions answer them individually
If $$A = 1 - 10 + 3 - 12 + 5 - 14 + 7 + …$$ upto 60 terms, then what is the value of $$A$$?
How many natural numbers are there between 1000 to 2000, which when divided by 341 leaves remainder 5?
Which of the following statement(s) is/are TRUE?
I. $$\surd(64) + \surd(0.0064) + \surd(0.81) + \surd(0.0081) = 9.07$$
II. $$\surd(0.010201) + \surd(98.01) + \surd(0.25) = 11.51$$
Which of the following statement(s) is/are TRUE?
I. $$(0.7)^2 + (0.07)^2 + (11.1)^2 > 123.8$$
II. $$(1.12)^2 + (10.3)^2 + (1.05)^2 > 108.3$$
Which of the following statement(s) is/are TRUE?
I. $$\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+.......+\frac{1}{11 \times 13} = \frac{12}{13}$$
II. $$\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+.......+\frac{1}{12 \times 13} = \frac{12}{13}$$
Which of the following statement(s) is/are TRUE?
I. $$\frac{3}{71} < \frac{5}{91} < \frac{7}{99}$$
II. $$\frac{11}{135} > \frac{12}{157} > \frac{13}{181}$$
If $$1 + \left(\frac{1}{2}\right) + \left(\frac{1}{3}\right) + … + \left(\frac{1}{20}\right) = k$$, then what is the value of $$\left(\frac{1}{4}\right) + \left(\frac{1}{6}\right) + \left(\frac{1}{8}\right) + … + \left(\frac{1}{40}\right)$$?
If $$A = 2^{32}, B = 2^{31} + 2^{30} + 2^{29} + … + 2^0$$ and $$C = 3^{15} + 3^{14} + 3^{13} + … +3^0$$, then which of the following option is TRUE?
M is the largest three digit number which when divided by 6 and 5 leaves remainder 5 and 3 respectively. What will be the remainder when M is divided by 11?