Let $$\sqrt{\ 6+\sqrt{\ 6+\sqrt{\ 6+........}}} = x$$
Therefore, $$\sqrt{\ 6+x} = x$$
           $$6+x = x^{2}$$
       $$x^{2}-x-6 = 0$$
$$x^2-3x+2x-6=0$$
$$x\left(x-3\right)+2\left(x-3\right)=0$$
     $$\left(x-3\right)\left(x+2\right)=0$$
        $$x=3,\ x=-2$$
 Hence, $$\sqrt{\ 6+\sqrt{\ 6+\sqrt{\ 6+........}}}=\ 3$$
  Â
               Â
Create a FREE account and get: