What is the value of $$\frac{(32 \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1)}{[4 \sin x \cos x \sin (60 - x) \cos (60 - x) \sin (60 + x) \cos (60 + x)]}$$?
We know :
$$\cos\ \left(2X\right)=2\cos^2X-1\ .$$
Now replace X=3x :
$$\cos6X=2\cos^23X-1\ .$$
Again, we know :Â $$\cos3X=4\cos^3X-3\cos X\ .$$
So, $$\cos6X=2\left(4\cos^3X-3\cos X\ \right)^2-1\ .$$
or, $$\cos6X=2\left(16\cos^6X+9\cos^2X\ -24\cos^3X\ \cos X\right)-1\ .$$
or, $$\cos6X=32\cos^6X+18\cos^2X\ -48\cos^4X\ -1\ .$$
Now,Â
$$4 sin (60-x).sin x. sin(60+x)$$
$$= 4 (sin 60.cos x - cos60 sin x).sin x. (sin 60.cos x + cos60 sin x)$$
$$=4\left(\frac{\sqrt{3}}{2}.\cos x-\sin x\times\frac{1}{2}\right).\sin x.\ \left(\frac{\sqrt{3}}{2}.\cos x+\sin x\times\frac{1}{2}\right)$$
$$= 4 sin x.(3/4. cos^2x - sin ^2x\times1/4)$$
$$= sin x.(3 cos^2x - sin ^2x)$$
$$= sin x [cos^2 x - sin^2 x + 2.cos^2 x]$$
$$= sin x.[cos^2 x - sin^2 x] + cos x.2 sin x.cos x$$
$$= sin x. cos 2x + cos x.sin 2x$$
$$= sin (x + 2x)$$
$$= sin 3x$$Â
Similarly, $$4\cos x.\cos\left(60+x\right).\cos\left(60-x\right)=\cos3x\ .$$
So, $$\frac{(32\cos^6x-48\cos^4x+18\cos^2x-1)}{[4\sin x\cos x\sin(60-x)\cos(60-x)\sin(60+x)\cos(60+x)]}$$
$$=\frac{4\times2\times\cos6x}{2\times\sin3x\times\cos3x}$$
$$=8\cot6x\ .$$
C is correct choice.
Create a FREE account and get: