If $$\frac{x}{y}=\frac{7}{4}$$, find the value of $$\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$$
Given that If $$\frac{x}{y}=\frac{7}{4}$$
Therefore, $$(\frac{x}{y})^2=\frac{49}{16}$$ ... (1)
$$\dfrac{x^{2}-y^{2}}{x^{2}+y^{2}}$$ this can be written as,
$$\Rightarrow$$ $$\dfrac{(\frac{x}{y})^2-1}{(\frac{x}{y})^2+1}$$
$$\Rightarrow$$ $$\dfrac{\frac{49}{16}-1}{\frac{49}{16}+1}$$
$$\Rightarrow$$ $$\dfrac{49-16}{49+16}$$
$$\Rightarrow$$ $$\dfrac{33}{65}$$
Hence, option C is the correct answer.
Create a FREE account and get: