The base of a right pyramid is an equilateral triangle with side 8 cm, andthe height of the pyramid is $$24\sqrt{3}$$ cm. The volume (in $$cm^3$$) of the pyramid is:
Base area = $$\frac{\sqrt{3}}{4} a^2$$
a = 8 cm
=Â $$\frac{\sqrt{3}}{4} 8^2$$ =Â $$\frac{\sqrt{3}}{4} 64$$
Base area = $$16\sqrt{3}$$
Volume = $$\frac{1}{3} \times base area \times h$$ =Â $$\frac{1}{3} \times 16\sqrt{3}Â \times 24\sqrt{3}$$
=Â $$16 \times 24 = 384Â cm^3$$
Create a FREE account and get: