If H$$_1$$ , H$$_2$$ , H$$_3$$ , ..., H$$_n$$ , are 'n' Harmonic means between ‘a’ and ‘b’ (≠ a), then value of $$\dfrac{H_{1}+a}{H_{1}-a}+\dfrac{H_{n}+b}{H_{n}-b}$$ is equal to
Let us assume that n = 3 and a, b = 2, 6.
Therefore, the harmonic sequence will be: 2, H$$_1$$, H$$_2$$, H$$_3$$, 6
Hence, H$$_2$$ = $$\dfrac{2*2*6}{2+6}$$ = 3
H$$_1$$ = $$\dfrac{2*2*3}{2+3}$$ = $$\dfrac{12}{5} = 2.4$$
H$$_3$$ = $$\dfrac{2*3*6}{3+6}$$ = $$4$$
Therefore, $$\dfrac{H_{1}+a}{H_{1}-a}+\dfrac{H_{n}+b}{H_{n}-b}$$
$$\dfrac{2.4+2}{2.4-2}+\dfrac{4+6}{4-6}$$
$$\Rightarrow$$ $$11-5$$ = 6.
Option B: 2n = 2*3 = 6.
Create a FREE account and get: