If $$A = 0.142857142857$$ and $$B = 0.16666$$ ......, then what is the value of $$\frac{(A + B)}{AB}$$?
$$A=0.142857142857$$
or, $$1000000A=142857+0.142857$$
or, $$1000000A=142857+A$$
or, $$A=\frac{142857}{999999}$$
or, $$A=\frac{1}{7}.$$
Now,Â
$$B=0.16666.........$$
or, $$100B=16+0.6666.........$$
or, $$100B=16+P\ \left(let\ say,\ P=0.6666....\right)$$
So, $$10P=6+0.66666.......$$
or, $$10P=6+P.$$
or, $$P=\frac{6}{9}=\frac{2}{3}.$$
So, $$100B=16+\frac{2}{3}=\frac{50}{3}.$$
or, $$B=\frac{1}{6}.$$
So, $$\frac{\left(A+B\right)}{AB}=\frac{\left(\frac{1}{6}+\frac{1}{7}\right)}{\frac{1}{6}.\frac{1}{7}}=\frac{\left(\frac{13}{6.7}\right)}{\left(\frac{1}{6.7}\right)}=13.$$
D is correct choice.
Create a FREE account and get: