Question 20

If $$x^3 - 4x^2 + 19 = 6(x - 1)$$, then what is the value of $$\left[x^2 + \left(\frac{1}{x - 4}\right)\right]$$?

Solution

Given that :

$$x^3 - 4x^2 + 19 = 6(x - 1)$$

or, $$x^3-4x^2+1=\left(6x-6-18\ \right).$$

So, 

$$\left[x^2+\left(\frac{1}{x-4}\right)\right]=\frac{x^3-4x^2+1}{\left(x-4\right)}=\frac{6x-6-18}{\left(x-4\right)}=\frac{6\left(x-4\right)}{\left(x-4\right)}=6.$$

C is correct choice.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App