Let $$ x = \frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}} and y = \frac{1}{x} $$, then the value of $$ 3x^2 - 5xy + 3y^2 is $$
$$ x = \frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}} and y = \frac{1}{x} $$
So, clearly from the above xy = 1
$$x+y =\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}} + \frac{\sqrt{13} - \sqrt{11}}{\sqrt{13} + \sqrt{11}}$$
= $$ \frac{(\sqrt{13} + \sqrt{11})^2 + (\sqrt{13} - \sqrt{11})^2}{13-11}$$
= $$\frac {13+11+2\sqrt{143}+13+11-2\sqrt{143}} {2}$$
= $$\frac{48}{2}$$
= 24
So, x+y = 24
$$3x^2-5xy+3y^2 = 3(x+y)^2 - 11xy$$
=$$3(24)^2-11(1)$$
= $$ 3 \times 576 - 11$$
= 1728 - 11
= 1717
Create a FREE account and get: