If $$ x = a sin\theta - b cos \theta, y = a cos \theta + b sin \theta $$ , then which of the following is true?
solution
$$ x = a sin\theta - b cos \theta$$ {squaring x}
$$ y = a cos \theta + b sin \theta $$ {squaring y}
$$ x^2 = a ^2 sin^2\theta + b^2 cos^2 \theta -2absin\theta cos \theta$$
$$ y^2 = a ^2 sin^2\theta + b^2 cos^2 \theta +2absin\theta cos \theta$$
adding both
we get
$$ x^2 $$+ $$ y^2 $$ = $$a ^2 sin^2\theta + b^2 cos^2 \theta -2absin\theta cos \theta$$ + $$a ^2 sin^2\theta + b^2 cos^2 \theta +2absin\theta cos \theta$$
$$ x^2 $$+ $$ y^2 $$ = $$a ^2 sin^2\theta + b^2 cos^2 \theta + a ^2 sin^2\theta + b^2 cos^2 \theta$$ { $$\because cos^2 \theta +sin^2 \theta = 1$$}
$$ x^2 $$+ $$ y^2 $$ = $$a ^2 (sin^2\theta + sin^2\theta) + b^2 (cos^2 \theta + cos^2 \theta)$$
$$ x^2 $$+ $$ y^2 $$ = $$ a^2 $$+ $$ b^2 $$
Create a FREE account and get: