If $$a = \frac{\sqrt3 + \sqrt2}{\sqrt3 - \sqrt2}$$ and $$b = \frac{\sqrt3 - \sqrt2}{\sqrt3 + \sqrt2}$$, then what is the value of $$a^2 + b^2 - ab$$?
From given data , ab=1 .
And, $$a+b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{6}+3+2-2\sqrt{6}}{3-2}=10\ .$$
So, $$a^2+b^2-ab=\left(a+b\right)^2-3ab=10^2-3.1=97\ .$$
A is correct choice.
Create a FREE account and get: