Question 114

290 students of MBA (International Business) in a reputed Business School have to study foreign language in Trimesters IV and V. Suppose the following information are given .
i. 120 students study Spanish
ii. 100 students study Mandarin
iii. At least 80 students, who study a foreign language, study neither Spanish nor Mandarin
Then the number of students who study Spanish but not Mandarin could be any number from

Solution
                                                                

It's given that 120 students study Spanish :         A + B = 120                                        ...(1)

              Also 100 students study Mandarin :       B + C = 100                                        ...(2)

At least 80 students will not opt for any of these two languages i.e.      

                                                     Spanish + Mandarin $$\leq$$ (290-80)

                                                     Spanish + Mandarin $$\leq$$ 210

                                                        A + B + C $$\leq$$ 210

Case 2: When B is minimum and A is maximum. 

Solving for boundary condition  A + B + C = 210                                                             ...(3)

Solving equations (1)+(2)-(3) 

                                                                   B = 10 

                                            i.e. A = 120 - B = 120 - 10 =110 {Maximum possible value of A}

Case 2: When B is maximum and A is minimum. 

Since B+C = 100 so, Maximum value B can attain is 100. Hence, the minimum value of A = 120 - B = 120 - 100 = 20 {Minimum possible value of A}

So we can say that the number of students who study Spanish but not Mandarin will be A [20 ,110].


Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 170+ previous papers with solutions PDF
  • Top 5000+ MBA exam Solved Questions for Free

cracku

Boost your Prep!

Download App