Question 79

If a-$$\frac{1}{a-3}$$=5 then the value of $$(a-3)^{3}-\frac{1}{(a-3)^{3}}$$

Solution

Let  a -3 = x 

       a = x + 3

Therefore

a - $$\ \frac{\ 1}{a - 3}$$ = 5

x + 3 - $$\ \frac{\ 1} {x}$$ = 5

x - $$\ \frac{\ 1}{x}$$ = 2

$$\left(x-\ \frac{\ 1}{x}\right)^3\ =\ 2^3$$

$$x^3-\ \frac{\ 1}{x^3}-3.x.\frac{\ 1}{x}\left(x-\frac{\ 1}{x}\right)\ =\ 8$$

$$x^3-\frac{\ 1}{x^3}-3\left(2\right)\ =\ 8$$

$$x^3-\frac{\ 1}{x^3}\ =\ 14$$

           


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App