Question 71

If $$a = 25, b = 15, c = -10$$, then the value of $$\frac{a^3 + b^3 + c^3 - 3 abc}{(a-b)^2 + (b-c)^2 + (c-a)^2}$$ is

Solution

Given  a = 25, b = 15, c = -10

$$\frac{a^{3}+b^{3}+c^{3}-3abc}{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}$$ = $$\frac{(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)}{2(a^{2}+b^{2}+c^{2}-ab-bc-ca)}$$

                                     =  $$\frac{a+b+c}{2}$$

                                     =  $$\frac{25+15-10}{2}$$

                                     =  15

                                                                          


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App