Question 66

If $$8x^3 - 27y^3 = (Ax + By) (Cx^2 - Dy^2 + 6xy),$$ then $$(A + B + C - D)$$ is equal to:

Solution

$$8x^3 - 27y^3 = (Ax + By) (Cx^2 - Dy^2 + 6xy)$$
$$(2x)^3 - (3y)^3 = (2x - 3y)(4x^2 + 9y^2 + 6xy) = (Ax + By) (Cx^2 - Dy^2 + 6xy)$$
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
by comparing,
A = 2
B = -3
C = 4
D = -9
$$(A + B + C - D)$$ = 2 - 3 + 4 + 9 = 12


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App