Base of a right prism is an equilateral triangle of side 6 cm. If the volume of the prism is 108 $$\sqrt{3}$$cc. its height is
area of the base = $$ \frac{\sqrt 3}{4} \times side^2 $$
             = $$ \frac{\sqrt 3}{4} \times 6 \times 6 $$
             = $$ 9\sqrt3 cm^2 $$
therefore, volume of the prism = $$ area of base \times height $$
$$ 108\sqrt 3 = 9\sqrt 3 \times h $$
solving h = $$ \frac{108 \sqrt 3}{9 \sqrt 3} = 12 $$Â Â Â Â Â Â Â Â
Create a FREE account and get: