The value of $$\frac{\sin (78^\circ + \theta) - \cos (12^\circ - \theta) + (\tan^2 70^\circ - \cosec^2 20^\circ)}{\sin 25^\circ \cos 65^\circ + \cos 25^\circ \sin 65^\circ}$$ is:
$$\frac{\sin (78^\circ + \theta) - \cos (12^\circ - \theta) + (\tan^2 70^\circ - \cosec^2 20^\circ)}{\sin 25^\circ \cos 65^\circ + \cos 25^\circ \sin 65^\circ}$$
=Â $$\frac{\sin (78^\circ + \theta) - \cos (90 -Â 78^\circ + \theta) + (\tan^2 70^\circ - \cosec^2(90 -Â 70^\circ)}{\sin 25^\circ \cos(90 -Â 25^\circ)Â + \cos 25^\circ \sin (90 -Â 25^\circ)}$$
= $$\frac{\sin (78^\circ + \theta) - \sin (78^\circ + \theta) + (\tan^2 70^\circ - \sec^270^\circ)}{\sin 25^\circ \sin25^\circ + \cos 25^\circ \cos 25^\circ}$$
= $$ \frac{(\tan^2 70^\circ - \sec^270^\circ)}{\sin^2 25^\circ + \cos^2 25^\circ}$$ = -1
Create a FREE account and get: