If $$\frac{3(x^2 + 1) - 7x}{3x} = 6,$$ x ≠ 0, then the value of $$\sqrt{x} + \frac{1}{\sqrt{x}}$$ is:
$$\frac{3(x^2 + 1) - 7x}{3x} = 6$$
$$\frac{x[3(x + \frac{1}{x}) - 7]}{3x} = 6,$$
$$(x +\frac{1}{x}) - \frac{7}{3} = 6$$
$$x +\frac{1}{x} = \frac{25}{3}$$
$$x +\frac{1}{x} + 2= \frac{25}{3} + 2$$
($$\because(a+b)^2 = a^2 + b^2 + 2ab$$)
$$(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = \frac{31}{3}$$
$$\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{\frac{31}{3}}$$
Create a FREE account and get: