$$a^2+b^2+c^2=2\left(a-b-c\right)-3$$
$$a^2+b^2+c^2=2a-2b-2c-3$$
$$a^2+b^2+c^2-2a+2b+2c+3=0$$
$$a^2-2a+1+b^2+2b+1+c^2+2c+1=0$$
$$\left(a-1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2=0$$
Sum of squares are zero so each term is zero
$$\left(a-1\right)^2=0$$, $$\left(b+1\right)^2=0$$,  $$\left(c+1\right)^2=0$$
$$a-1=0$$, Â Â $$b+1=0$$, Â Â $$c+1=0$$
$$=$$>Â a = 1, b = -1, c =-1
Therefore a-b+c = 1-(-1)-1= 1+1-1= 1
Create a FREE account and get: