Question 48

If $$f : R \rightarrow R$$ be a continuous function satisfying  $$f(x) + f(3 - x) = 4$$, then $$\int_{0}^{3} f(x) dx$$ is equal to 

$$\int_0^3f(x)dx=\int_0^3f(3-x)dx=A\left(say\right)$$ (using property of definite integrals).

Given $$f(x) + f(3 - x) = 4$$

Integrating with limit 0 to 3, we have 

$$\int_0^3f(x)dx+\int_0^3f(x)dx=\int_0^34dx$$

$$A+A=4\left[3-0\right]$$

I=6.

Create a FREE account and get:

  • All Quant Formulas and shortcuts PDF
  • 40+ previous papers with solutions PDF
  • Top 500 MBA exam Solved Questions for Free

PGDBA Quant Questions | PGDBA Quantitative Ability

PGDBA DILR Questions | LRDI Questions For PGDBA

PGDBA Verbal Ability Questions | VARC Questions For PGDBA