Question 37

If a +b =1, find the value of $$ a^3 + b^3  -  ab - (a^2  - b^2)^2 $$

Solution

$$ a^3 + b^3 - ab - (a^2 - b^2)^2 $$

=$$(a+b)^3-3ab(a+b)-ab-[(a-b)(a+b)]^2$$

=$$1-3ab-ab-(a-b)^2$$

=$$1-4ab-(a^2+b^2-2ab)$$

=$$1-4ab-a^2-b^2+2ab$$

=$$1-(a^2+b^2+2ab$$)

=$$1-(a+b)^2$$

=>$$1-1$$=0


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App