In trapezium ABCD,AB|| CD and AB = 2CD.Its diagonals intersect at O. If the area of $$Â \triangle AOB =Â 84Â cm^2$$, then the area of $$ \triangle $$COD is equalto
latek
$$\frac{area of \triangle COD}{area of \triangle AOB} = \frac{CD^2}{AB^2}$$
$$\frac{area of \triangle COD}{84} = (\frac{1}{2})^2 = \frac{1}{4}$$
$$area of \triangle COD = 21 cm^2$$
So , the answer would be option b)$$21 cm^2$$
Create a FREE account and get: