If $$a^2=b^3=c^4$$, $$b^2=d^5$$, then find the the value of $$\log_ab$$ $$\times\ \ $$ $$\log_cd$$.
correct answer:-4
Given that $$\frac{1}{\log _{a+1}(91)} + \frac{1}{\log _{b+1}(91)} = 1$$. If a, b are integers, find the value of a+b.
correct answer:-1
Find the number of real number solutions to the following equation $$ \log _9 {(Y+6)^2} + \log _{27} {(11-Y)^3} = 4$$
correct answer:-1
$$\left\{\frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \div \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}\right\} \times 2 =$$
correct answer:-2
If $$\log_{10}{11} = a$$ then $$\log_{10}{\left(\frac{1}{110}\right)}$$ is equal to
correct answer:-4
If $$R_c=m\times\ln\left(1+\ \frac{\ R_m}{m}\right)$$ then $$R_m$$ is equal to
correct answer:-3
Sham is trying to solve the expression:
$$\log \tan 1^\circ + \log \tan 2^\circ + \log \tan 3^\circ + ........ + \log \tan 89^\circ$$.
The correct answer would be?
correct answer:-3
If $$\frac{1}{2} \log x + \frac{1}{2} \log y + \log 2 = \log(x + y)$$, then ..............
correct answer:-3
$$\log_{5}{25} + \log_{2} (\log_{3}{81})$$ is
correct answer:-4
If $$2^x + 2^{x + 1} = 48$$, then the value of $$x^x$$ is
correct answer:-3
What is the value of x in the following expression?
$$x + \log_{10} (1 + 2^x) = x \log_{10} 5 + \log_{10} 6$$
correct answer:-1
Find the value of $$\log_{3^2}{5^4} \times \log_{5^2}{3^4}$$
correct answer:-3
what is the value of $$\frac{\log_{27}{9} \times \log_{16}{64}}{\log_{4}{\sqrt2}}$$?
correct answer:-4
Find the value of $$\log_{10}{10} + \log_{10}{10^2} + ..... + \log_{10}{10^n}$$
correct answer:-4
The value is?
$$5^{\frac{1}{4}} \times (125)^{0.25}$$
correct answer:-1