For the following questions answer them individually
If $$log(2^{a}\times3^{b}\times5^{c} )$$is the arithmetic mean of $$log ( 2^{2}\times3^{3}\times5)$$, $$log(2^{6}\times3\times5^{7} )$$, and $$log(2 \times3^{2}\times5^{4} )$$, then a equals
Let $$a_{1},a_{2},a_{3},a_{4},a_{5}$$ be a sequence of five consecutive odd numbers. Consider a new sequence of five consecutive even numbers ending with $$2a_{3}$$
If the sum of the numbers in the new sequence is 450, then $$a_{5}$$ is
How many different pairs(a,b) of positive integers are there such that $$a\geq b$$ and $$\frac{1}{a}+\frac{1}{b}=\frac{1}{9}$$?
In how many ways can 8 identical pens be distributed among Amal, Bimal, and Kamal so that Amal gets at least 1 pen, Bimal gets at least 2 pens, and Kamal gets at least 3 pens?
How many four digit numbers, which are divisible by 6, can be formed using the digits 0, 2, 3, 4, 6, such that no digit is used more than once and 0 does not occur in the left-most position?
If f(ab) = f(a)f(b) for all positive integers a and b, then the largest possible value of f(1) is
Let $$f(x) =2x-5$$ and $$g(x) =7-2x$$. Then |f(x)+ g(x)| = |f(x)|+ |g(x)| if and only if
An infinite geometric progression $$a_1,a_2,...$$ has the property that $$a_n= 3(a_{n+1}+ a_{n+2} + ...)$$ for every n $$\geq$$ 1. If the sum $$a_1+a_2+a_3...+=32$$, then $$a_5$$ is
If $$a_{1}=\frac{1}{2\times5},a_{2}=\frac{1}{5\times8},a_{3}=\frac{1}{8\times11},...,$$ then $$a_{1}+a_{2}+a_{3}+...+a_{100}$$ is
Incase of any issue contact support@cracku.in