How many different pairs(a,b) of positive integers are there such that $$a\geq b$$ and $$\frac{1}{a}+\frac{1}{b}=\frac{1}{9}$$?
Correct Answer: 3
$$\frac{1}{a}+\frac{1}{b}=\frac{1}{9}$$
=> $$ab = 9(a + b)$$
=> $$ab - 9(a+b) = 0$$
=> $$ ab - 9(a+b) + 81 = 81$$
=> $$(a - 9)(b - 9) = 81, a > b$$
Hence we have the following cases,
$$ a - 9 = 81, b - 9 = 1$$ => $$(a,b) = (90,10)$$
$$ a - 9 = 27, b - 9 = 3$$ => $$(a,b) = (36,12)$$
$$ a - 9 = 9, b - 9 = 9$$ => $$(a,b) = (18,18)$$
Hence there are three possible positive integral values of (a,b)
Create a FREE account and get: