# CAT 2007

Instructions

Directions for the following two questions:

Mr. David manufactures and sells a single product at a fixed price in a niche market. The selling price of each unit is Rs. 30. On the other hand, the cost, in rupees, of producing x units is $$240 + bx + cx^2$$ , where b and c are some constants. Mr. David noticed that doubling the daily production from 20 to 40 units increases the daily production cost by 66.67%. However, an increase in daily production from 40 to 60 units results in an increase of only 50% in the daily production cost. Assume that demand is unlimited and that Mr. David can sell as much as he can produce. His objective is to maximize the profit.

Question 11

Question 12

# What is the maximum daily profit, in rupees, that Mr. David can realize from his business?

Instructions

Directions for the following two questions:

Let $$a_1= p$$ and $$b_1 = q$$, where p and q are positive quantities.

Define $$a_n = pb_{n-1} , b_n = qb_{n-1}$$ , for even n > 1. and $$a_n = pa_{n-1} , b_n = qa_{n-1}$$ , for odd n > 1.

Question 13

Question 14

# If p = 1/3 and q = 2/3 , then what is the smallest odd n such that $$a_n+b_n < 0.01$$?

Instructions

For the following questions answer them individually

Question 15

Question 16

Question 17

Question 18

Question 19

Question 20

OR