Question 64

If $$(x + 6\sqrt{2})^{\cfrac{1}{2}} - (x - 6\sqrt{2})^{\cfrac{1}{2}} = 2\sqrt{2}$$, then x equals


Correct Answer: 11

Solution

Squaring on both sides, we get:

$$x+6\sqrt{\ 2}+x-6\sqrt{\ 2}-2\left(x^2-72\right)^{\frac{1}{2}}=8$$
$$x-\left(x^2-72\right)^{\frac{1}{2}}=4$$

Bringing x to the other side, we get:
$$-\left(x^2-72\right)^{\frac{1}{2}}=4-x$$
Squaring on both sides again, we get:

$$x^2-72=16+x^2-8x$$
$$8x=88$$
$$x=11$$

Therefore, 11 is the correct answer. 


Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 38+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App