Question 2

# Any non-zero real numbers x,y such that $$y\neq3$$ and $$\frac{x}{y}<\frac{x+3}{y-3}$$, Will satisfy the condition.

Solution

It is given that $$\frac{x}{y}<\ \frac{\ x+3}{y-3}$$, which can be written as $$\frac{x}{y}-\frac{\ x+3}{y-3}<0$$

=> $$\ \frac{\ x\left(y-3\right)-y\left(x+3\right)}{y\left(y-3\right)}<0$$

=> $$\ \frac{\ xy-3x-xy-3y}{y\left(y-3\right)}<0$$

=> $$\ \frac{\ -3\left(x+y\right)}{y\left(y-3\right)}<0$$

=> $$\ \frac{\ 3\left(x+y\right)}{y\left(y-3\right)}>0$$

From this inequality, we can say that, when $$y<0=>y(y-3)>0$$. Now to satisfy the given equation $$\ \frac{\ 3\left(x+y\right)}{y\left(y-3\right)}>0$$,

$$(x+y)$$ must be greater than zero Hence, $$x>0$$ and $$\left|x\right|\ >\left|y\right|$$

Therefore, the magnitude of $$x$$ is greater than the magnitude of $$y$$.

Hence, $$x>y$$, and $$\left|x\right|\ >\ \left|y\right|$$ =>$$-x\ <\ y$$ (Since the magnitude of $$x$$ is greater than the magnitude of $$y$$.)

The correct option is B.

### Video Solution

• All Quant CAT complete Formulas and shortcuts PDF
• 35+ CAT previous year papers with video solutions PDF