If x is a positive quantity such that $$2^{x}=3^{\log_{5}{2}}$$. then x is equal to
Givne that: $$2^{x}=3^{\log_{5}{2}}$$
$$\Rightarrow$$ $$2^{x}=2^{\log_{5}{3}}$$
$$\Rightarrow$$ $$x=\log_{5}{3}$$
$$\Rightarrow$$ $$x=\log_{5}{\dfrac{3*5}{5}}$$
$$\Rightarrow$$ $$x=\log_{5}{5}+\log_{5}{\dfrac{3}{5}}$$
$$\Rightarrow$$ $$x=1+\log_{5}{\dfrac{3}{5}}$$. Hence, option D is the correct answer.
Create a FREE account and get:
CAT Averages, Ratios & Proportions
CAT Logarithms, Surds & Indices
Formi Nagar
1 year, 2 months ago
Its a different question
Diptimayee Sethi
1 week, 2 days ago
The sequence is just different
Formi Nagar
1 year ago
Right