Anjali, Bipasha, and Chitra visited an entertainment park that has four rides. Each ride lasts one hour and can accommodate one visitor at one point. All rides begin at 9 am and must be completed by 5 pm except for Ride-3, for which the last ride has to be completed by 1 pm. Ride gates open every 30 minutes, e.g. 10 am, 10:30 am, and so on. Whenever a ride gate opens, and there is no visitor inside, the first visitor waiting in the queue buys the ticket just before taking the ride. The ticket prices are Rs. 20, Rs. 50, Rs. 30 and Rs. 40 for Rides 1 to 4, respectively. Each of the three visitors took at least one ride and did not necessarily take all rides. None of them took the same ride more than once. The movement time from one ride to another is negligible, and a visitor leaves the ride immediately after the completion of the ride. No one takes a break inside the park unless mentioned explicitly.
The following information is also known.
1. Chitra never waited in the queue and completed her visit by 11 am after spending Rs. 50 to pay for the ticket(s).
2. Anjali took Ride-1 at 11 am after waiting for 30 mins for Chitra to complete it. It was the only ride where Anjali waited.
3. Bipasha began her first of three rides at 11:30 am. All three visitors incurred the same amount of ticket expense by 12:15 pm.
4. The last ride taken by Anjali and Bipasha was the same, where Bipasha waited 30 mins for Anjali to complete her ride. Before standing in the queue for that ride, Bipasha took a 1-hour coffee break after completing her previous ride.
How many rides did Anjali and Chitra take in total?
What was the total amount spent on tickets (in Rs.) by Anjali?
For the following questions answer them individually
Let a, b, m and n be natural numbers such that $$a>1$$ and $$b>1$$. If $$a^{m}b^{n}=144^{145}$$, then the largest possible value of $$n-m$$ is
Any non-zero real numbers x,y such that $$y\neq3$$ and $$\frac{x}{y}<\frac{x+3}{y-3}$$, Will satisfy the condition.
For any natural numbers m, n, and k, such that k divides both $$m+2n$$ and $$3m+4n$$, k must be a common divisor of
The sum of all possible values of x satisfying the equation $$2^{4x^{2}}-2^{2x^{2}+x+16}+2^{2x+30}=0$$, is
The number of positive integers less than 50, having exactly two distinct factors other than 1 and itself, is
For some positive real number x, if $$\log_{\sqrt{3}}{(x)}+\frac{\log_{x}{(25)}}{\log_{x}{(0.008)}}=\frac{16}{3}$$, then the value of $$\log_{3}({3x^{2}})$$ is
Incase of any issue contact support@cracku.in