For some positive real number x, if $$\log_{\sqrt{3}}{(x)}+\frac{\log_{x}{(25)}}{\log_{x}{(0.008)}}=\frac{16}{3}$$, then the value of $$\log_{3}({3x^{2}})$$ is
Correct Answer: 7
It is given that $$\log_{\sqrt{3}}{(x)}+\frac{\log_{x}{(25)}}{\log_{x}{(0.008)}}=\frac{16}{3}$$, which can be written as:
=> $$2\log_3x+\log_{0.008}25\ =\ \frac{16}{3}$$
=> $$2\log_3x+\log_{\frac{8}{1000}}25\ =\ \frac{16}{3}$$
=> $$2\log_3x+\log_{\frac{1}{125}}25\ =\ \frac{16}{3}$$
=> $$2\log_3x+\log_{5^{-3}}\left(5\right)^2\ =\ \frac{16}{3}$$
=> $$2\log_3x-\frac{2}{3}=\ \frac{16}{3}$$
=> $$2\log_3x=\frac{16}{3}+\frac{2}{3}$$
=> $$2\log_3x=6$$
=> $$\log_3x^2=6\ =>\ x^2\ =\ 3^6$$
Hence, $$\log_3\left(3\cdot x^2\right)\ =\ \log_3\left(3\cdot3^6\right)\ =\log_33^7\ =\ 7$$
Create a FREE account and get: