858+ CAT Reading Comprehension Questions With Video Solutions PDF

Reading comprehension is an integral part of the VARC section of CAT. In the CAT exam, you will be given a passage followed by the questions asked based on the given passage. Practice the following CAT Reading comprehension sets from previous papers with detailed video solutions. Take them in a test format, or download all the questions in a PDF format. To get more detailed understanding go across CAT Previous Papers where you get a fair understanding of the exam. You can also get better understanding of these type of questions by taking numerous CAT mock tests. Click on the below link to download CAT reading comprehension questions with video solutions PDF for free. The best part is that the CAT experts explain all the questions in detail in the video solutions.

Mistakes To Avoid

Speed reading: Avoid speed reading, skimming, surfing, and other gimmicky techniques while taking an RC.

Reading the questions first: Reading the questions first will not be a good idea. Read the passage first and assimilate the information before moving on to the questions.

Maintain objectivity: Do not let your knowledge of a topic interfere with the information provided in the passage.

    YouTube Thumbnail

    CAT Reading Comprehension Questions Weightage Over Past 6 Years

    Year

    Weightage (No. of  Questions)

    202516
    202416
    202316

    2022

    16

    2021

    16

    2020

    16

    Tips to Improve Reading Comprehension for CAT

    Develop a Reading Habit: Read as much and as frequently as possible. A proper reading habit will strengthen your vocabulary and rapidly develop your comprehension capability.

    Start Reading That Makes You Interested: You must persistently maintain your initial reading streak and let it form a routine.

    Write the summary: To summarize what the article intends to convey in your own words. Analyze why the author has included the paragraph in the passage and how the paragraph is linked to the central idea of the RC passage

      CAT 2025 Reading Comprehension questions

      Instruction for set 1:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In 1982, a raging controversy broke out over a forest act drafted by the Government of India. This act sought to strengthen the already extensive powers enjoyed by the forest bureaucracy in controlling the extraction, disposal and sale of forest produce. It also gave forest officials greater powers to strictly regulate the entry of any person into reserved forest areas. While forest officials justified the act on the grounds that it was necessary to stop the continuing deforestation, it was bitterly opposed by representatives of grassroots organisations, who argued that it was a major violation of the rights of peasants and tribals living in and around forest areas. . . .

      The debate over the draft forest act fuelled a larger controversy over the orientation of state forest policy. It was pointed out, for example, that the draft act was closely modelled on its predecessor, the Forest Act of 1878. The earlier Act rested on a usurpation of rights of ownership by the colonial state which had little precedent in precolonial history. It was further argued that the system of forestry introduced by the British—and continued, with little modification, after 1947 —emphasised revenue generation and commercial exploitation, while its policing orientation excluded villagers who had the most longstanding claim on forest resources. Critics called for a complete overhaul of forest administration, pressing the government to formulate policy and legislation more appropriate to present needs. . . .

      That debate is not over yet. The draft act was shelved, though it has not as yet been formally withdrawn. Meanwhile, the 1878 Act (as modified by an amendment in 1927) continues to be in operation. In response to its critics, the government has made some important changes in forest policy, e.g., no longer treating forests as a source of revenue, and stopping ecologically hazardous practices such as the clearfelling of natural forests. At the same time, it has shown little inclination to meet the major demand of the critics of forest policy—namely, abandoning the principle of state monopoly over forest land by handing over areas of degraded forests to
      individuals and communities for afforestation.

      . . . [The] 1878 Forest Act itself was passed only after a bitter and prolonged debate within the colonial bureaucracy, in which protagonists put forward arguments strikingly similar to those being advanced today. As is well known, the Indian Forest Department owes its origin to the requirements of railway companies. The early years of the expansion of the railway network, c. 1853 onwards, led to tremendous deforestation in peninsular India owing to the railway's requirements of fuelwood and construction timber. Huge quantities of durable timbers were also needed for use as sleepers across the newly laid tracks. Inexperienced in forestry, the British called in German experts to commence systematic forest management. The Indian Forest Department was started in 1864, with Dietrich Brandis, formerly a Lecturer at Bonn, as the first Inspector General of Forests. The new department needed legislative backing to function effectively, and in the following year, 1865, the first forest act was passed. . . .

      Question 1

      Which one of the following best encapsulates the reason for the “raging controversy” developing into a “larger controversy”?

      Show Answer Explanation

      Instruction for set 1:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In 1982, a raging controversy broke out over a forest act drafted by the Government of India. This act sought to strengthen the already extensive powers enjoyed by the forest bureaucracy in controlling the extraction, disposal and sale of forest produce. It also gave forest officials greater powers to strictly regulate the entry of any person into reserved forest areas. While forest officials justified the act on the grounds that it was necessary to stop the continuing deforestation, it was bitterly opposed by representatives of grassroots organisations, who argued that it was a major violation of the rights of peasants and tribals living in and around forest areas. . . .

      The debate over the draft forest act fuelled a larger controversy over the orientation of state forest policy. It was pointed out, for example, that the draft act was closely modelled on its predecessor, the Forest Act of 1878. The earlier Act rested on a usurpation of rights of ownership by the colonial state which had little precedent in precolonial history. It was further argued that the system of forestry introduced by the British—and continued, with little modification, after 1947 —emphasised revenue generation and commercial exploitation, while its policing orientation excluded villagers who had the most longstanding claim on forest resources. Critics called for a complete overhaul of forest administration, pressing the government to formulate policy and legislation more appropriate to present needs. . . .

      That debate is not over yet. The draft act was shelved, though it has not as yet been formally withdrawn. Meanwhile, the 1878 Act (as modified by an amendment in 1927) continues to be in operation. In response to its critics, the government has made some important changes in forest policy, e.g., no longer treating forests as a source of revenue, and stopping ecologically hazardous practices such as the clearfelling of natural forests. At the same time, it has shown little inclination to meet the major demand of the critics of forest policy—namely, abandoning the principle of state monopoly over forest land by handing over areas of degraded forests to
      individuals and communities for afforestation.

      . . . [The] 1878 Forest Act itself was passed only after a bitter and prolonged debate within the colonial bureaucracy, in which protagonists put forward arguments strikingly similar to those being advanced today. As is well known, the Indian Forest Department owes its origin to the requirements of railway companies. The early years of the expansion of the railway network, c. 1853 onwards, led to tremendous deforestation in peninsular India owing to the railway's requirements of fuelwood and construction timber. Huge quantities of durable timbers were also needed for use as sleepers across the newly laid tracks. Inexperienced in forestry, the British called in German experts to commence systematic forest management. The Indian Forest Department was started in 1864, with Dietrich Brandis, formerly a Lecturer at Bonn, as the first Inspector General of Forests. The new department needed legislative backing to function effectively, and in the following year, 1865, the first forest act was passed. . . .

      Question 2

      All of the following, if true, would weaken the narrative presented in the passage EXCEPT that:

      Show Answer Explanation

      Instruction for set 1:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In 1982, a raging controversy broke out over a forest act drafted by the Government of India. This act sought to strengthen the already extensive powers enjoyed by the forest bureaucracy in controlling the extraction, disposal and sale of forest produce. It also gave forest officials greater powers to strictly regulate the entry of any person into reserved forest areas. While forest officials justified the act on the grounds that it was necessary to stop the continuing deforestation, it was bitterly opposed by representatives of grassroots organisations, who argued that it was a major violation of the rights of peasants and tribals living in and around forest areas. . . .

      The debate over the draft forest act fuelled a larger controversy over the orientation of state forest policy. It was pointed out, for example, that the draft act was closely modelled on its predecessor, the Forest Act of 1878. The earlier Act rested on a usurpation of rights of ownership by the colonial state which had little precedent in precolonial history. It was further argued that the system of forestry introduced by the British—and continued, with little modification, after 1947 —emphasised revenue generation and commercial exploitation, while its policing orientation excluded villagers who had the most longstanding claim on forest resources. Critics called for a complete overhaul of forest administration, pressing the government to formulate policy and legislation more appropriate to present needs. . . .

      That debate is not over yet. The draft act was shelved, though it has not as yet been formally withdrawn. Meanwhile, the 1878 Act (as modified by an amendment in 1927) continues to be in operation. In response to its critics, the government has made some important changes in forest policy, e.g., no longer treating forests as a source of revenue, and stopping ecologically hazardous practices such as the clearfelling of natural forests. At the same time, it has shown little inclination to meet the major demand of the critics of forest policy—namely, abandoning the principle of state monopoly over forest land by handing over areas of degraded forests to
      individuals and communities for afforestation.

      . . . [The] 1878 Forest Act itself was passed only after a bitter and prolonged debate within the colonial bureaucracy, in which protagonists put forward arguments strikingly similar to those being advanced today. As is well known, the Indian Forest Department owes its origin to the requirements of railway companies. The early years of the expansion of the railway network, c. 1853 onwards, led to tremendous deforestation in peninsular India owing to the railway's requirements of fuelwood and construction timber. Huge quantities of durable timbers were also needed for use as sleepers across the newly laid tracks. Inexperienced in forestry, the British called in German experts to commence systematic forest management. The Indian Forest Department was started in 1864, with Dietrich Brandis, formerly a Lecturer at Bonn, as the first Inspector General of Forests. The new department needed legislative backing to function effectively, and in the following year, 1865, the first forest act was passed. . . .

      Question 3

      According to the passage, which one of the following is not common to the 1878 Forest Act and the 1982 draft forest act?

      Show Answer Explanation

      Instruction for set 1:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In 1982, a raging controversy broke out over a forest act drafted by the Government of India. This act sought to strengthen the already extensive powers enjoyed by the forest bureaucracy in controlling the extraction, disposal and sale of forest produce. It also gave forest officials greater powers to strictly regulate the entry of any person into reserved forest areas. While forest officials justified the act on the grounds that it was necessary to stop the continuing deforestation, it was bitterly opposed by representatives of grassroots organisations, who argued that it was a major violation of the rights of peasants and tribals living in and around forest areas. . . .

      The debate over the draft forest act fuelled a larger controversy over the orientation of state forest policy. It was pointed out, for example, that the draft act was closely modelled on its predecessor, the Forest Act of 1878. The earlier Act rested on a usurpation of rights of ownership by the colonial state which had little precedent in precolonial history. It was further argued that the system of forestry introduced by the British—and continued, with little modification, after 1947 —emphasised revenue generation and commercial exploitation, while its policing orientation excluded villagers who had the most longstanding claim on forest resources. Critics called for a complete overhaul of forest administration, pressing the government to formulate policy and legislation more appropriate to present needs. . . .

      That debate is not over yet. The draft act was shelved, though it has not as yet been formally withdrawn. Meanwhile, the 1878 Act (as modified by an amendment in 1927) continues to be in operation. In response to its critics, the government has made some important changes in forest policy, e.g., no longer treating forests as a source of revenue, and stopping ecologically hazardous practices such as the clearfelling of natural forests. At the same time, it has shown little inclination to meet the major demand of the critics of forest policy—namely, abandoning the principle of state monopoly over forest land by handing over areas of degraded forests to
      individuals and communities for afforestation.

      . . . [The] 1878 Forest Act itself was passed only after a bitter and prolonged debate within the colonial bureaucracy, in which protagonists put forward arguments strikingly similar to those being advanced today. As is well known, the Indian Forest Department owes its origin to the requirements of railway companies. The early years of the expansion of the railway network, c. 1853 onwards, led to tremendous deforestation in peninsular India owing to the railway's requirements of fuelwood and construction timber. Huge quantities of durable timbers were also needed for use as sleepers across the newly laid tracks. Inexperienced in forestry, the British called in German experts to commence systematic forest management. The Indian Forest Department was started in 1864, with Dietrich Brandis, formerly a Lecturer at Bonn, as the first Inspector General of Forests. The new department needed legislative backing to function effectively, and in the following year, 1865, the first forest act was passed. . . .

      Question 4

      According to the passage, which one of the following reforms is yet to happen in India’s forest policies?

      Show Answer Explanation

      Instruction for set 2:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Often the well intentioned music lover or the traditionally-minded professional composer asks two basic questions when faced with the electronic music phenomena: (1) . . . is this type of artistic
      creation music at all? and, (2) given that the product is accepted as music of a new type or order, is not such music “inhuman”? . . . As Lejaren Hiller points out in his book Experimental Music (coauthor Leonard M. Isaacson), two questions which often arise when music is discussed are: (a) the substance of musical communication and its symbolic and semantic significance, if any, and (b) the particular processes, both mental and technical, which are involved in creating and responding to musical composition. The ever-present popular concept of music as a direct, open, emotional expression and as a subjective form of communication from the composer, is, of course still that of the nineteenth century, when composers themselves spoke of music in those terms . . . But since the third decade of our century many composers have preferred more objective definitions of music, epitomized in Stravinsky's description of it as “a form of speculation in terms of sound and time”. An acceptance of this more characteristic twentieth-century view of the art of musical composition will of course immediately bring the layman closer to an understanding of, and sympathetic response to, electronic music, even if the forms, sounds and approaches it uses will still be of a foreign nature to him.

      A communication problem however will still remain. The principal barrier that electronic music presents at large, in relation to the communication process, is that composers in this medium are employing a new language of forms . . . where terms like 'densities', 'indefinite pitch relations', 'dynamic serialization', 'permutation', etc., are substitutes (or remote equivalents) for the traditional concepts of harmony, melody, rhythm, etc. . . . When the new structural procedures of electronic music are at last fully understood by the listener the barriers between him and the work he faces will be removed. . . .

      The medium of electronic music has of course tempted many kinds of composers to try their hand at it . . . But the serious-minded composer approaches the world of electronic music with a more sophisticated and profound concept of creation. Although he knows that he can reproduce and employ melodic, rhythmic patterns and timbres of a traditional nature, he feels that it is in the exploration of sui generis languages and forms that the aesthetic magic of the new medium lies. And, conscientiously, he plunges into this search.

      The second objection usually levelled against electronic music is much more innocent in nature. When people speak—sometimes very vehemently—of the 'inhuman' quality of this music they seem to forget that the composer is the one who fires the machines, collects the sounds, manipulates them, pushes the buttons, programs the computer, filters the sounds, establishes pitches and scales, splices tape, thinks of forms, and rounds up the over-all structure of the piece, as well as every detail of it.

      Question 5

      The goal of the author over the course of this passage is to:

      Show Answer

      Instruction for set 2:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Often the well intentioned music lover or the traditionally-minded professional composer asks two basic questions when faced with the electronic music phenomena: (1) . . . is this type of artistic
      creation music at all? and, (2) given that the product is accepted as music of a new type or order, is not such music “inhuman”? . . . As Lejaren Hiller points out in his book Experimental Music (coauthor Leonard M. Isaacson), two questions which often arise when music is discussed are: (a) the substance of musical communication and its symbolic and semantic significance, if any, and (b) the particular processes, both mental and technical, which are involved in creating and responding to musical composition. The ever-present popular concept of music as a direct, open, emotional expression and as a subjective form of communication from the composer, is, of course still that of the nineteenth century, when composers themselves spoke of music in those terms . . . But since the third decade of our century many composers have preferred more objective definitions of music, epitomized in Stravinsky's description of it as “a form of speculation in terms of sound and time”. An acceptance of this more characteristic twentieth-century view of the art of musical composition will of course immediately bring the layman closer to an understanding of, and sympathetic response to, electronic music, even if the forms, sounds and approaches it uses will still be of a foreign nature to him.

      A communication problem however will still remain. The principal barrier that electronic music presents at large, in relation to the communication process, is that composers in this medium are employing a new language of forms . . . where terms like 'densities', 'indefinite pitch relations', 'dynamic serialization', 'permutation', etc., are substitutes (or remote equivalents) for the traditional concepts of harmony, melody, rhythm, etc. . . . When the new structural procedures of electronic music are at last fully understood by the listener the barriers between him and the work he faces will be removed. . . .

      The medium of electronic music has of course tempted many kinds of composers to try their hand at it . . . But the serious-minded composer approaches the world of electronic music with a more sophisticated and profound concept of creation. Although he knows that he can reproduce and employ melodic, rhythmic patterns and timbres of a traditional nature, he feels that it is in the exploration of sui generis languages and forms that the aesthetic magic of the new medium lies. And, conscientiously, he plunges into this search.

      The second objection usually levelled against electronic music is much more innocent in nature. When people speak—sometimes very vehemently—of the 'inhuman' quality of this music they seem to forget that the composer is the one who fires the machines, collects the sounds, manipulates them, pushes the buttons, programs the computer, filters the sounds, establishes pitches and scales, splices tape, thinks of forms, and rounds up the over-all structure of the piece, as well as every detail of it.

      Question 6

      What relation does the “communication problem” mentioned in paragraph 2 have to the questions that the author recounts at the beginning of the passage?


      Instruction for set 2:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Often the well intentioned music lover or the traditionally-minded professional composer asks two basic questions when faced with the electronic music phenomena: (1) . . . is this type of artistic
      creation music at all? and, (2) given that the product is accepted as music of a new type or order, is not such music “inhuman”? . . . As Lejaren Hiller points out in his book Experimental Music (coauthor Leonard M. Isaacson), two questions which often arise when music is discussed are: (a) the substance of musical communication and its symbolic and semantic significance, if any, and (b) the particular processes, both mental and technical, which are involved in creating and responding to musical composition. The ever-present popular concept of music as a direct, open, emotional expression and as a subjective form of communication from the composer, is, of course still that of the nineteenth century, when composers themselves spoke of music in those terms . . . But since the third decade of our century many composers have preferred more objective definitions of music, epitomized in Stravinsky's description of it as “a form of speculation in terms of sound and time”. An acceptance of this more characteristic twentieth-century view of the art of musical composition will of course immediately bring the layman closer to an understanding of, and sympathetic response to, electronic music, even if the forms, sounds and approaches it uses will still be of a foreign nature to him.

      A communication problem however will still remain. The principal barrier that electronic music presents at large, in relation to the communication process, is that composers in this medium are employing a new language of forms . . . where terms like 'densities', 'indefinite pitch relations', 'dynamic serialization', 'permutation', etc., are substitutes (or remote equivalents) for the traditional concepts of harmony, melody, rhythm, etc. . . . When the new structural procedures of electronic music are at last fully understood by the listener the barriers between him and the work he faces will be removed. . . .

      The medium of electronic music has of course tempted many kinds of composers to try their hand at it . . . But the serious-minded composer approaches the world of electronic music with a more sophisticated and profound concept of creation. Although he knows that he can reproduce and employ melodic, rhythmic patterns and timbres of a traditional nature, he feels that it is in the exploration of sui generis languages and forms that the aesthetic magic of the new medium lies. And, conscientiously, he plunges into this search.

      The second objection usually levelled against electronic music is much more innocent in nature. When people speak—sometimes very vehemently—of the 'inhuman' quality of this music they seem to forget that the composer is the one who fires the machines, collects the sounds, manipulates them, pushes the buttons, programs the computer, filters the sounds, establishes pitches and scales, splices tape, thinks of forms, and rounds up the over-all structure of the piece, as well as every detail of it.

      Question 7

      The mention of Stravinsky's description of music in the first paragraph does all the following EXCEPT:


      Instruction for set 2:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Often the well intentioned music lover or the traditionally-minded professional composer asks two basic questions when faced with the electronic music phenomena: (1) . . . is this type of artistic
      creation music at all? and, (2) given that the product is accepted as music of a new type or order, is not such music “inhuman”? . . . As Lejaren Hiller points out in his book Experimental Music (coauthor Leonard M. Isaacson), two questions which often arise when music is discussed are: (a) the substance of musical communication and its symbolic and semantic significance, if any, and (b) the particular processes, both mental and technical, which are involved in creating and responding to musical composition. The ever-present popular concept of music as a direct, open, emotional expression and as a subjective form of communication from the composer, is, of course still that of the nineteenth century, when composers themselves spoke of music in those terms . . . But since the third decade of our century many composers have preferred more objective definitions of music, epitomized in Stravinsky's description of it as “a form of speculation in terms of sound and time”. An acceptance of this more characteristic twentieth-century view of the art of musical composition will of course immediately bring the layman closer to an understanding of, and sympathetic response to, electronic music, even if the forms, sounds and approaches it uses will still be of a foreign nature to him.

      A communication problem however will still remain. The principal barrier that electronic music presents at large, in relation to the communication process, is that composers in this medium are employing a new language of forms . . . where terms like 'densities', 'indefinite pitch relations', 'dynamic serialization', 'permutation', etc., are substitutes (or remote equivalents) for the traditional concepts of harmony, melody, rhythm, etc. . . . When the new structural procedures of electronic music are at last fully understood by the listener the barriers between him and the work he faces will be removed. . . .

      The medium of electronic music has of course tempted many kinds of composers to try their hand at it . . . But the serious-minded composer approaches the world of electronic music with a more sophisticated and profound concept of creation. Although he knows that he can reproduce and employ melodic, rhythmic patterns and timbres of a traditional nature, he feels that it is in the exploration of sui generis languages and forms that the aesthetic magic of the new medium lies. And, conscientiously, he plunges into this search.

      The second objection usually levelled against electronic music is much more innocent in nature. When people speak—sometimes very vehemently—of the 'inhuman' quality of this music they seem to forget that the composer is the one who fires the machines, collects the sounds, manipulates them, pushes the buttons, programs the computer, filters the sounds, establishes pitches and scales, splices tape, thinks of forms, and rounds up the over-all structure of the piece, as well as every detail of it.

      Question 8

      From the context in which it is placed, the phrase “sui generis” in paragraph 3 suggests which one of the following?


      Instruction for set 3:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In [my book “Searches”], I chronicle how big technology companies have exploited human language for their gain. We let this happen, I argue, because we also benefit somewhat from using the products. It’s a dynamic that makes us complicit in big tech's accumulation of wealth and power: we’re both victims and beneficiaries. I describe this complicity, but I also enact it, through my own internet archives: my Google searches, my Amazon product reviews and, yes, my ChatGPT dialogues. . . .

      People often describe chatbots’ textual output as “bland” or “generic” - the linguistic equivalent of a beige office building. OpenAI’s products are built to “sound like a colleague”, as OpenAI puts it, using language that, coming from a person, would sound “polite”, “empathetic”, “kind”, “rationally optimistic” and “engaging”, among other qualities. OpenAI describes these strategies as helping its products seem “professional” and “approachable”. This appears to be bound up with making us feel safe . . .

      Trust is a challenge for artificial intelligence (AI) companies, partly because their products regularly produce falsehoods and reify sexist, racist, US-centric cultural norms. While the companies are working on these problems, they persist: OpenAI found that its latest systems generate errors at a higher rate than its previous system. In the book, I wrote about the inaccuracies and biases and also demonstrated them with the products. When I prompted Microsoft’s Bing Image Creator to produce a picture of engineers and space explorers, it gave me an entirely male cast of characters; when my father asked ChatGPT to edit his writing, it transmuted his perfectly correct Indian English into American English. Those weren’t flukes. Research suggests that both tendencies are widespread.

      In my own ChatGPT dialogues, I wanted to enact how the product’s veneer of collegial neutrality could lull us into absorbing false or biased responses without much critical engagement. Over time, ChatGPT seemed to be guiding me to write a more positive book about big tech - including editing my description of OpenAI’s CEO, Sam Altman, to call him “a visionary and a pragmatist”. I'm not aware of research on whether ChatGPT tends to favor big tech, OpenAI or Altman, and I can only guess why it seemed that way in our conversation. OpenAI explicitly states that its products shouldn't attempt to influence users’ thinking. When I asked ChatGPT about some of the issues, it blamed biases in its training data - though I suspect my arguably leading questions played a role too. When I queried ChatGPT about its rhetoric, it responded: “The way I communicate is designed to foster trust and confidence in my responses, which can be both helpful and potentially misleading.”. . .

      OpenAI has its own goals, of course. Among them, it emphasizes wanting to build AI that “benefits all of humanity”. But while the company is controlled by a non-profit with that mission, its funders still seek a return on their investment. That will presumably require getting people using products such as ChatGPT even more than they already are - a goal that is easier to accomplish if people see those products as trustworthy collaborators.

      Question 9

      On the basis of the purpose of the examples in the passage, pick the odd one out from the following AI-generated responses mentioned in the passage:


      Instruction for set 3:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In [my book “Searches”], I chronicle how big technology companies have exploited human language for their gain. We let this happen, I argue, because we also benefit somewhat from using the products. It’s a dynamic that makes us complicit in big tech's accumulation of wealth and power: we’re both victims and beneficiaries. I describe this complicity, but I also enact it, through my own internet archives: my Google searches, my Amazon product reviews and, yes, my ChatGPT dialogues. . . .

      People often describe chatbots’ textual output as “bland” or “generic” - the linguistic equivalent of a beige office building. OpenAI’s products are built to “sound like a colleague”, as OpenAI puts it, using language that, coming from a person, would sound “polite”, “empathetic”, “kind”, “rationally optimistic” and “engaging”, among other qualities. OpenAI describes these strategies as helping its products seem “professional” and “approachable”. This appears to be bound up with making us feel safe . . .

      Trust is a challenge for artificial intelligence (AI) companies, partly because their products regularly produce falsehoods and reify sexist, racist, US-centric cultural norms. While the companies are working on these problems, they persist: OpenAI found that its latest systems generate errors at a higher rate than its previous system. In the book, I wrote about the inaccuracies and biases and also demonstrated them with the products. When I prompted Microsoft’s Bing Image Creator to produce a picture of engineers and space explorers, it gave me an entirely male cast of characters; when my father asked ChatGPT to edit his writing, it transmuted his perfectly correct Indian English into American English. Those weren’t flukes. Research suggests that both tendencies are widespread.

      In my own ChatGPT dialogues, I wanted to enact how the product’s veneer of collegial neutrality could lull us into absorbing false or biased responses without much critical engagement. Over time, ChatGPT seemed to be guiding me to write a more positive book about big tech - including editing my description of OpenAI’s CEO, Sam Altman, to call him “a visionary and a pragmatist”. I'm not aware of research on whether ChatGPT tends to favor big tech, OpenAI or Altman, and I can only guess why it seemed that way in our conversation. OpenAI explicitly states that its products shouldn't attempt to influence users’ thinking. When I asked ChatGPT about some of the issues, it blamed biases in its training data - though I suspect my arguably leading questions played a role too. When I queried ChatGPT about its rhetoric, it responded: “The way I communicate is designed to foster trust and confidence in my responses, which can be both helpful and potentially misleading.”. . .

      OpenAI has its own goals, of course. Among them, it emphasizes wanting to build AI that “benefits all of humanity”. But while the company is controlled by a non-profit with that mission, its funders still seek a return on their investment. That will presumably require getting people using products such as ChatGPT even more than they already are - a goal that is easier to accomplish if people see those products as trustworthy collaborators.

      Question 10

      All of the following statements from the passage affirm the disjunct between the claims about AI made by tech companies and what AI actually does EXCEPT:


      Instruction for set 3:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In [my book “Searches”], I chronicle how big technology companies have exploited human language for their gain. We let this happen, I argue, because we also benefit somewhat from using the products. It’s a dynamic that makes us complicit in big tech's accumulation of wealth and power: we’re both victims and beneficiaries. I describe this complicity, but I also enact it, through my own internet archives: my Google searches, my Amazon product reviews and, yes, my ChatGPT dialogues. . . .

      People often describe chatbots’ textual output as “bland” or “generic” - the linguistic equivalent of a beige office building. OpenAI’s products are built to “sound like a colleague”, as OpenAI puts it, using language that, coming from a person, would sound “polite”, “empathetic”, “kind”, “rationally optimistic” and “engaging”, among other qualities. OpenAI describes these strategies as helping its products seem “professional” and “approachable”. This appears to be bound up with making us feel safe . . .

      Trust is a challenge for artificial intelligence (AI) companies, partly because their products regularly produce falsehoods and reify sexist, racist, US-centric cultural norms. While the companies are working on these problems, they persist: OpenAI found that its latest systems generate errors at a higher rate than its previous system. In the book, I wrote about the inaccuracies and biases and also demonstrated them with the products. When I prompted Microsoft’s Bing Image Creator to produce a picture of engineers and space explorers, it gave me an entirely male cast of characters; when my father asked ChatGPT to edit his writing, it transmuted his perfectly correct Indian English into American English. Those weren’t flukes. Research suggests that both tendencies are widespread.

      In my own ChatGPT dialogues, I wanted to enact how the product’s veneer of collegial neutrality could lull us into absorbing false or biased responses without much critical engagement. Over time, ChatGPT seemed to be guiding me to write a more positive book about big tech - including editing my description of OpenAI’s CEO, Sam Altman, to call him “a visionary and a pragmatist”. I'm not aware of research on whether ChatGPT tends to favor big tech, OpenAI or Altman, and I can only guess why it seemed that way in our conversation. OpenAI explicitly states that its products shouldn't attempt to influence users’ thinking. When I asked ChatGPT about some of the issues, it blamed biases in its training data - though I suspect my arguably leading questions played a role too. When I queried ChatGPT about its rhetoric, it responded: “The way I communicate is designed to foster trust and confidence in my responses, which can be both helpful and potentially misleading.”. . .

      OpenAI has its own goals, of course. Among them, it emphasizes wanting to build AI that “benefits all of humanity”. But while the company is controlled by a non-profit with that mission, its funders still seek a return on their investment. That will presumably require getting people using products such as ChatGPT even more than they already are - a goal that is easier to accomplish if people see those products as trustworthy collaborators.

      Question 11

      The author compares AI-generated texts with “a beige office building” for all of the following reasons EXCEPT:


      Instruction for set 3:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      In [my book “Searches”], I chronicle how big technology companies have exploited human language for their gain. We let this happen, I argue, because we also benefit somewhat from using the products. It’s a dynamic that makes us complicit in big tech's accumulation of wealth and power: we’re both victims and beneficiaries. I describe this complicity, but I also enact it, through my own internet archives: my Google searches, my Amazon product reviews and, yes, my ChatGPT dialogues. . . .

      People often describe chatbots’ textual output as “bland” or “generic” - the linguistic equivalent of a beige office building. OpenAI’s products are built to “sound like a colleague”, as OpenAI puts it, using language that, coming from a person, would sound “polite”, “empathetic”, “kind”, “rationally optimistic” and “engaging”, among other qualities. OpenAI describes these strategies as helping its products seem “professional” and “approachable”. This appears to be bound up with making us feel safe . . .

      Trust is a challenge for artificial intelligence (AI) companies, partly because their products regularly produce falsehoods and reify sexist, racist, US-centric cultural norms. While the companies are working on these problems, they persist: OpenAI found that its latest systems generate errors at a higher rate than its previous system. In the book, I wrote about the inaccuracies and biases and also demonstrated them with the products. When I prompted Microsoft’s Bing Image Creator to produce a picture of engineers and space explorers, it gave me an entirely male cast of characters; when my father asked ChatGPT to edit his writing, it transmuted his perfectly correct Indian English into American English. Those weren’t flukes. Research suggests that both tendencies are widespread.

      In my own ChatGPT dialogues, I wanted to enact how the product’s veneer of collegial neutrality could lull us into absorbing false or biased responses without much critical engagement. Over time, ChatGPT seemed to be guiding me to write a more positive book about big tech - including editing my description of OpenAI’s CEO, Sam Altman, to call him “a visionary and a pragmatist”. I'm not aware of research on whether ChatGPT tends to favor big tech, OpenAI or Altman, and I can only guess why it seemed that way in our conversation. OpenAI explicitly states that its products shouldn't attempt to influence users’ thinking. When I asked ChatGPT about some of the issues, it blamed biases in its training data - though I suspect my arguably leading questions played a role too. When I queried ChatGPT about its rhetoric, it responded: “The way I communicate is designed to foster trust and confidence in my responses, which can be both helpful and potentially misleading.”. . .

      OpenAI has its own goals, of course. Among them, it emphasizes wanting to build AI that “benefits all of humanity”. But while the company is controlled by a non-profit with that mission, its funders still seek a return on their investment. That will presumably require getting people using products such as ChatGPT even more than they already are - a goal that is easier to accomplish if people see those products as trustworthy collaborators.

      Question 12

      The author of the passage is least likely to agree with which one of the following claims?


      Instruction for set 4:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Different sciences exhibit different science cultures and practices. For example, in astronomy, observation - until what is today called the new astronomy - had always been limited to what could be seen within the limits of optical light. Indeed, until early modernity the limits to optical light were also limits of what humans could themselves see within their limited and relative perceptual spectrum of human vision. With early modernity and the invention of lensed optical instruments - telescopes - astronomers could begin to observe phenomena never seen before. Magnification and resolution began to allow what was previously imperceptible to be perceived - but within the familiar limits of optical vision. Galileo, having learned of the Dutch invention of a telescope by Hans Lippershey, went on to build some hundred of his own, improving from the Dutch 3x to nearly 30x telescopes - which turn out to be the limit of magnificational power without chromatic distortion. And it was with his own telescopes that he made the observations launching early modern astronomy (phases of Venus, satellites of Jupiter, etc.). Isaac Newton’s later improvement with reflecting telescopes expanded upon the magnificational-resolution capacity of optical observation; and, from Newton to the twentieth century, improvement continued on to the later very large array of light telescopes today - following the usual technological trajectory of “more-is-better” but still remaining within the limits of the light spectrum. Today’s astronomy has now had the benefit of some four centuries of optical telescopy. The “new astronomy,” however, opens the full known electromagnetic spectrum to observation, beginning with the accidental discovery of radio astronomy early in the twentieth century, and leading today to the diverse variety of EMS telescopes which can explore the range from gamma to radio waves. Thus, astronomy, now outfitted with new instruments, “smart” adaptive optics, very large arrays, etc., illustrates one style of instrumentally embodied science - a technoscience. Of course astronomy, with the very recent exceptions of probes to solar system bodies (Moon, Mars, Venus, asteroids), remains largely a “receptive” science, dependent upon instrumentation which can detect and receive emissions.

      Contemporary biology displays a quite different instrument array and, according to Evelyn Fox- Keller, also a different scientific culture. She cites her own experience, coming from mathematical physics into microbiology, and takes account of the distinctive instrumental culture in her Making Sense of Life (2002). Here, particularly with the development of biotechnology, instrumentation is far more interventional than in the astronomy case. Microscopic instrumentation can be and often is interventional in style: “gene-splicing” and other techniques of biotechnology, while still in their infancy, are clearly part of the interventional trajectory of biological instrumentation. Yet, in both disciplines, the sciences involved are today highly instrumentalized and could not progress successfully without constant improvements upon the respective instrumental trajectories. So, minimalistically, one may conclude that the sciences are technologically, instrumentally embodied. But the styles of embodiment differ, and perhaps the last of the scientific disciplines to move into such technical embodiment is mathematics, which only contemporarily has come to rely more and more upon the computational machinery now in common use.

      Question 13

      None of the following statements, if true, contradicts the arguments in the passage EXCEPT:


      Instruction for set 4:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Different sciences exhibit different science cultures and practices. For example, in astronomy, observation - until what is today called the new astronomy - had always been limited to what could be seen within the limits of optical light. Indeed, until early modernity the limits to optical light were also limits of what humans could themselves see within their limited and relative perceptual spectrum of human vision. With early modernity and the invention of lensed optical instruments - telescopes - astronomers could begin to observe phenomena never seen before. Magnification and resolution began to allow what was previously imperceptible to be perceived - but within the familiar limits of optical vision. Galileo, having learned of the Dutch invention of a telescope by Hans Lippershey, went on to build some hundred of his own, improving from the Dutch 3x to nearly 30x telescopes - which turn out to be the limit of magnificational power without chromatic distortion. And it was with his own telescopes that he made the observations launching early modern astronomy (phases of Venus, satellites of Jupiter, etc.). Isaac Newton’s later improvement with reflecting telescopes expanded upon the magnificational-resolution capacity of optical observation; and, from Newton to the twentieth century, improvement continued on to the later very large array of light telescopes today - following the usual technological trajectory of “more-is-better” but still remaining within the limits of the light spectrum. Today’s astronomy has now had the benefit of some four centuries of optical telescopy. The “new astronomy,” however, opens the full known electromagnetic spectrum to observation, beginning with the accidental discovery of radio astronomy early in the twentieth century, and leading today to the diverse variety of EMS telescopes which can explore the range from gamma to radio waves. Thus, astronomy, now outfitted with new instruments, “smart” adaptive optics, very large arrays, etc., illustrates one style of instrumentally embodied science - a technoscience. Of course astronomy, with the very recent exceptions of probes to solar system bodies (Moon, Mars, Venus, asteroids), remains largely a “receptive” science, dependent upon instrumentation which can detect and receive emissions.

      Contemporary biology displays a quite different instrument array and, according to Evelyn Fox- Keller, also a different scientific culture. She cites her own experience, coming from mathematical physics into microbiology, and takes account of the distinctive instrumental culture in her Making Sense of Life (2002). Here, particularly with the development of biotechnology, instrumentation is far more interventional than in the astronomy case. Microscopic instrumentation can be and often is interventional in style: “gene-splicing” and other techniques of biotechnology, while still in their infancy, are clearly part of the interventional trajectory of biological instrumentation. Yet, in both disciplines, the sciences involved are today highly instrumentalized and could not progress successfully without constant improvements upon the respective instrumental trajectories. So, minimalistically, one may conclude that the sciences are technologically, instrumentally embodied. But the styles of embodiment differ, and perhaps the last of the scientific disciplines to move into such technical embodiment is mathematics, which only contemporarily has come to rely more and more upon the computational machinery now in common use.

      Question 14

      All of the following statements may be rejected as valid inferences from the passage EXCEPT:


      Instruction for set 4:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Different sciences exhibit different science cultures and practices. For example, in astronomy, observation - until what is today called the new astronomy - had always been limited to what could be seen within the limits of optical light. Indeed, until early modernity the limits to optical light were also limits of what humans could themselves see within their limited and relative perceptual spectrum of human vision. With early modernity and the invention of lensed optical instruments - telescopes - astronomers could begin to observe phenomena never seen before. Magnification and resolution began to allow what was previously imperceptible to be perceived - but within the familiar limits of optical vision. Galileo, having learned of the Dutch invention of a telescope by Hans Lippershey, went on to build some hundred of his own, improving from the Dutch 3x to nearly 30x telescopes - which turn out to be the limit of magnificational power without chromatic distortion. And it was with his own telescopes that he made the observations launching early modern astronomy (phases of Venus, satellites of Jupiter, etc.). Isaac Newton’s later improvement with reflecting telescopes expanded upon the magnificational-resolution capacity of optical observation; and, from Newton to the twentieth century, improvement continued on to the later very large array of light telescopes today - following the usual technological trajectory of “more-is-better” but still remaining within the limits of the light spectrum. Today’s astronomy has now had the benefit of some four centuries of optical telescopy. The “new astronomy,” however, opens the full known electromagnetic spectrum to observation, beginning with the accidental discovery of radio astronomy early in the twentieth century, and leading today to the diverse variety of EMS telescopes which can explore the range from gamma to radio waves. Thus, astronomy, now outfitted with new instruments, “smart” adaptive optics, very large arrays, etc., illustrates one style of instrumentally embodied science - a technoscience. Of course astronomy, with the very recent exceptions of probes to solar system bodies (Moon, Mars, Venus, asteroids), remains largely a “receptive” science, dependent upon instrumentation which can detect and receive emissions.

      Contemporary biology displays a quite different instrument array and, according to Evelyn Fox- Keller, also a different scientific culture. She cites her own experience, coming from mathematical physics into microbiology, and takes account of the distinctive instrumental culture in her Making Sense of Life (2002). Here, particularly with the development of biotechnology, instrumentation is far more interventional than in the astronomy case. Microscopic instrumentation can be and often is interventional in style: “gene-splicing” and other techniques of biotechnology, while still in their infancy, are clearly part of the interventional trajectory of biological instrumentation. Yet, in both disciplines, the sciences involved are today highly instrumentalized and could not progress successfully without constant improvements upon the respective instrumental trajectories. So, minimalistically, one may conclude that the sciences are technologically, instrumentally embodied. But the styles of embodiment differ, and perhaps the last of the scientific disciplines to move into such technical embodiment is mathematics, which only contemporarily has come to rely more and more upon the computational machinery now in common use.

      Question 15

      To which one of the following instruments would the characterisations of instruments in the passage be least applicable?


      Instruction for set 4:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Different sciences exhibit different science cultures and practices. For example, in astronomy, observation - until what is today called the new astronomy - had always been limited to what could be seen within the limits of optical light. Indeed, until early modernity the limits to optical light were also limits of what humans could themselves see within their limited and relative perceptual spectrum of human vision. With early modernity and the invention of lensed optical instruments - telescopes - astronomers could begin to observe phenomena never seen before. Magnification and resolution began to allow what was previously imperceptible to be perceived - but within the familiar limits of optical vision. Galileo, having learned of the Dutch invention of a telescope by Hans Lippershey, went on to build some hundred of his own, improving from the Dutch 3x to nearly 30x telescopes - which turn out to be the limit of magnificational power without chromatic distortion. And it was with his own telescopes that he made the observations launching early modern astronomy (phases of Venus, satellites of Jupiter, etc.). Isaac Newton’s later improvement with reflecting telescopes expanded upon the magnificational-resolution capacity of optical observation; and, from Newton to the twentieth century, improvement continued on to the later very large array of light telescopes today - following the usual technological trajectory of “more-is-better” but still remaining within the limits of the light spectrum. Today’s astronomy has now had the benefit of some four centuries of optical telescopy. The “new astronomy,” however, opens the full known electromagnetic spectrum to observation, beginning with the accidental discovery of radio astronomy early in the twentieth century, and leading today to the diverse variety of EMS telescopes which can explore the range from gamma to radio waves. Thus, astronomy, now outfitted with new instruments, “smart” adaptive optics, very large arrays, etc., illustrates one style of instrumentally embodied science - a technoscience. Of course astronomy, with the very recent exceptions of probes to solar system bodies (Moon, Mars, Venus, asteroids), remains largely a “receptive” science, dependent upon instrumentation which can detect and receive emissions.

      Contemporary biology displays a quite different instrument array and, according to Evelyn Fox- Keller, also a different scientific culture. She cites her own experience, coming from mathematical physics into microbiology, and takes account of the distinctive instrumental culture in her Making Sense of Life (2002). Here, particularly with the development of biotechnology, instrumentation is far more interventional than in the astronomy case. Microscopic instrumentation can be and often is interventional in style: “gene-splicing” and other techniques of biotechnology, while still in their infancy, are clearly part of the interventional trajectory of biological instrumentation. Yet, in both disciplines, the sciences involved are today highly instrumentalized and could not progress successfully without constant improvements upon the respective instrumental trajectories. So, minimalistically, one may conclude that the sciences are technologically, instrumentally embodied. But the styles of embodiment differ, and perhaps the last of the scientific disciplines to move into such technical embodiment is mathematics, which only contemporarily has come to rely more and more upon the computational machinery now in common use.

      Question 16

      Which one of the following observations is a valid conclusion to draw from the statement that “the sciences involved are today highly instrumentalised and could not progress successfully without constant improvements upon the respective instrumental trajectories”?


      Instruction for set 5:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Time and again, whenever a population [of Mexican tetra fish] was swept into a cave and survived long enough for natural selection to have its way, the eyes disappeared. “But it’s not that everything has been lost in cavefish . . . Many enhancements have also happened.” . . . Studies have found that cave-dwelling fish can detect lower levels of amino acids than surface fish can. They also have more tastebuds and a higher density of sensitive cells alongside their bodies that let them sense water pressure and flow. . . .

      Killing the processes that support the formation of the eye is quite literally what happens. Just like non-cave-dwelling members of the species, all cavefish embryos start making eyes. But after a few hours, cells in the developing eye start dying, until the entire structure has disappeared. [Developmental biologist Misty] Riddle thinks this apparent inefficiency may be unavoidable. “The early development of the brain and the eye are completely intertwined—they happen together,” she says. That means the least disruptive way for eyelessness to evolve may be to start making an eye and then get rid of it. . . .

      It’s easy to see why cavefish would be at a disadvantage if they were to maintain expensive tissues they aren’t using. Since relatively little lives or grows in their caves, the fish are likely surviving on a meager diet of mostly bat feces and organic waste that washes in during the rainy season. Researchers keeping cavefish in labs have discovered that, genetically, the creatures are exquisitely adapted to absorbing and storing nutrients. . . .

      Fats can be toxic for tissues, [evolutionary physiologist Nicolas] Rohner explains, so they are stored in fat cells. “But when these cells get too big, they can burst, which is why we often see chronic inflammation in humans and other animals that have stored a lot of fat in their tissues.” Yet a 2020 study by Rohner, Krishnan and their colleagues revealed that even very well-fed cavefish had fewer signs of inflammation in their fat tissues than surface fish do. Even in their sparse cave conditions, wild cavefish can sometimes get very fat, says Riddle. This is presumably because, whenever food ends up in the cave, the fish eat as much of it as possible, since there may be nothing else for a long time to come. Intriguingly, Riddle says, their fat is usually bright yellow because of high levels of carotenoids, the substance in the carrots that your grandmother used to tell you were good for your…eyes.

      “The first thing that came to our mind, of course, was that they were accumulating these because they don’t have eyes,” says Riddle. In this species, such ideas can be tested: Scientists can cross surface fish (with eyes) and cavefish (without eyes) and look at what their offspring are like. When that’s done, Riddle says, researchers see no link between eye presence or size and the accumulation of carotenoids. Some eyeless cavefish had fat that was practically white, indicating lower carotenoid levels. Instead, Riddle thinks these carotenoids may be another adaptation to suppress inflammation, which might be important in the wild, as cavefish are likely overeating whenever food arrives.

      Question 17

      All of the following statements from the passage describe adaptation in Mexican tetra cavefish EXCEPT:


      Instruction for set 5:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Time and again, whenever a population [of Mexican tetra fish] was swept into a cave and survived long enough for natural selection to have its way, the eyes disappeared. “But it’s not that everything has been lost in cavefish . . . Many enhancements have also happened.” . . . Studies have found that cave-dwelling fish can detect lower levels of amino acids than surface fish can. They also have more tastebuds and a higher density of sensitive cells alongside their bodies that let them sense water pressure and flow. . . .

      Killing the processes that support the formation of the eye is quite literally what happens. Just like non-cave-dwelling members of the species, all cavefish embryos start making eyes. But after a few hours, cells in the developing eye start dying, until the entire structure has disappeared. [Developmental biologist Misty] Riddle thinks this apparent inefficiency may be unavoidable. “The early development of the brain and the eye are completely intertwined—they happen together,” she says. That means the least disruptive way for eyelessness to evolve may be to start making an eye and then get rid of it. . . .

      It’s easy to see why cavefish would be at a disadvantage if they were to maintain expensive tissues they aren’t using. Since relatively little lives or grows in their caves, the fish are likely surviving on a meager diet of mostly bat feces and organic waste that washes in during the rainy season. Researchers keeping cavefish in labs have discovered that, genetically, the creatures are exquisitely adapted to absorbing and storing nutrients. . . .

      Fats can be toxic for tissues, [evolutionary physiologist Nicolas] Rohner explains, so they are stored in fat cells. “But when these cells get too big, they can burst, which is why we often see chronic inflammation in humans and other animals that have stored a lot of fat in their tissues.” Yet a 2020 study by Rohner, Krishnan and their colleagues revealed that even very well-fed cavefish had fewer signs of inflammation in their fat tissues than surface fish do. Even in their sparse cave conditions, wild cavefish can sometimes get very fat, says Riddle. This is presumably because, whenever food ends up in the cave, the fish eat as much of it as possible, since there may be nothing else for a long time to come. Intriguingly, Riddle says, their fat is usually bright yellow because of high levels of carotenoids, the substance in the carrots that your grandmother used to tell you were good for your…eyes.

      “The first thing that came to our mind, of course, was that they were accumulating these because they don’t have eyes,” says Riddle. In this species, such ideas can be tested: Scientists can cross surface fish (with eyes) and cavefish (without eyes) and look at what their offspring are like. When that’s done, Riddle says, researchers see no link between eye presence or size and the accumulation of carotenoids. Some eyeless cavefish had fat that was practically white, indicating lower carotenoid levels. Instead, Riddle thinks these carotenoids may be another adaptation to suppress inflammation, which might be important in the wild, as cavefish are likely overeating whenever food arrives.

      Question 18

      Which one of the following best explains why the “apparent inefficiency” is “unavoidable”?


      Instruction for set 5:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Time and again, whenever a population [of Mexican tetra fish] was swept into a cave and survived long enough for natural selection to have its way, the eyes disappeared. “But it’s not that everything has been lost in cavefish . . . Many enhancements have also happened.” . . . Studies have found that cave-dwelling fish can detect lower levels of amino acids than surface fish can. They also have more tastebuds and a higher density of sensitive cells alongside their bodies that let them sense water pressure and flow. . . .

      Killing the processes that support the formation of the eye is quite literally what happens. Just like non-cave-dwelling members of the species, all cavefish embryos start making eyes. But after a few hours, cells in the developing eye start dying, until the entire structure has disappeared. [Developmental biologist Misty] Riddle thinks this apparent inefficiency may be unavoidable. “The early development of the brain and the eye are completely intertwined—they happen together,” she says. That means the least disruptive way for eyelessness to evolve may be to start making an eye and then get rid of it. . . .

      It’s easy to see why cavefish would be at a disadvantage if they were to maintain expensive tissues they aren’t using. Since relatively little lives or grows in their caves, the fish are likely surviving on a meager diet of mostly bat feces and organic waste that washes in during the rainy season. Researchers keeping cavefish in labs have discovered that, genetically, the creatures are exquisitely adapted to absorbing and storing nutrients. . . .

      Fats can be toxic for tissues, [evolutionary physiologist Nicolas] Rohner explains, so they are stored in fat cells. “But when these cells get too big, they can burst, which is why we often see chronic inflammation in humans and other animals that have stored a lot of fat in their tissues.” Yet a 2020 study by Rohner, Krishnan and their colleagues revealed that even very well-fed cavefish had fewer signs of inflammation in their fat tissues than surface fish do. Even in their sparse cave conditions, wild cavefish can sometimes get very fat, says Riddle. This is presumably because, whenever food ends up in the cave, the fish eat as much of it as possible, since there may be nothing else for a long time to come. Intriguingly, Riddle says, their fat is usually bright yellow because of high levels of carotenoids, the substance in the carrots that your grandmother used to tell you were good for your…eyes.

      “The first thing that came to our mind, of course, was that they were accumulating these because they don’t have eyes,” says Riddle. In this species, such ideas can be tested: Scientists can cross surface fish (with eyes) and cavefish (without eyes) and look at what their offspring are like. When that’s done, Riddle says, researchers see no link between eye presence or size and the accumulation of carotenoids. Some eyeless cavefish had fat that was practically white, indicating lower carotenoid levels. Instead, Riddle thinks these carotenoids may be another adaptation to suppress inflammation, which might be important in the wild, as cavefish are likely overeating whenever food arrives.

      Question 19

      Which one of the following results for the cross between surface fish (with eyes) and cavefish (without eyes) would invalidate Riddle’s inference from the experiment?


      Instruction for set 5:

      The passage below is accompanied by four questions. Based on the passage, choose the best answer for each question.

      Time and again, whenever a population [of Mexican tetra fish] was swept into a cave and survived long enough for natural selection to have its way, the eyes disappeared. “But it’s not that everything has been lost in cavefish . . . Many enhancements have also happened.” . . . Studies have found that cave-dwelling fish can detect lower levels of amino acids than surface fish can. They also have more tastebuds and a higher density of sensitive cells alongside their bodies that let them sense water pressure and flow. . . .

      Killing the processes that support the formation of the eye is quite literally what happens. Just like non-cave-dwelling members of the species, all cavefish embryos start making eyes. But after a few hours, cells in the developing eye start dying, until the entire structure has disappeared. [Developmental biologist Misty] Riddle thinks this apparent inefficiency may be unavoidable. “The early development of the brain and the eye are completely intertwined—they happen together,” she says. That means the least disruptive way for eyelessness to evolve may be to start making an eye and then get rid of it. . . .

      It’s easy to see why cavefish would be at a disadvantage if they were to maintain expensive tissues they aren’t using. Since relatively little lives or grows in their caves, the fish are likely surviving on a meager diet of mostly bat feces and organic waste that washes in during the rainy season. Researchers keeping cavefish in labs have discovered that, genetically, the creatures are exquisitely adapted to absorbing and storing nutrients. . . .

      Fats can be toxic for tissues, [evolutionary physiologist Nicolas] Rohner explains, so they are stored in fat cells. “But when these cells get too big, they can burst, which is why we often see chronic inflammation in humans and other animals that have stored a lot of fat in their tissues.” Yet a 2020 study by Rohner, Krishnan and their colleagues revealed that even very well-fed cavefish had fewer signs of inflammation in their fat tissues than surface fish do. Even in their sparse cave conditions, wild cavefish can sometimes get very fat, says Riddle. This is presumably because, whenever food ends up in the cave, the fish eat as much of it as possible, since there may be nothing else for a long time to come. Intriguingly, Riddle says, their fat is usually bright yellow because of high levels of carotenoids, the substance in the carrots that your grandmother used to tell you were good for your…eyes.

      “The first thing that came to our mind, of course, was that they were accumulating these because they don’t have eyes,” says Riddle. In this species, such ideas can be tested: Scientists can cross surface fish (with eyes) and cavefish (without eyes) and look at what their offspring are like. When that’s done, Riddle says, researchers see no link between eye presence or size and the accumulation of carotenoids. Some eyeless cavefish had fat that was practically white, indicating lower carotenoid levels. Instead, Riddle thinks these carotenoids may be another adaptation to suppress inflammation, which might be important in the wild, as cavefish are likely overeating whenever food arrives.

      Question 20

      On the basis of the information in the passage, what is the most likely function of carotenoids in Mexican tetra cavefish?

      cracku

      Boost your Prep!

      Download App