CAT 2019 Question Paper (Slot 1) Question 79

Question 79

The product of two positive numbers is 616. If the ratio of the difference of their cubes to the cube of their difference is 157:3, then the sum of the two numbers is

Solution

Assume the numbers are a and b, then ab=616

We have, $$\ \ \frac{\ a^3-b^3}{\left(a-b\right)^3}$$ = $$\ \frac{\ 157}{3}$$

=> $$\ 3\left(a^3-b^3\right)\ =\ 157\left(a^3-b^3+3ab\left(b-a\right)\right)$$

=> $$154\left(a^3-b^3\right)+3*157*ab\left(b-a\right)$$ = 0

=> $$154\left(a^3-b^3\right)+3*616*157\left(b-a\right)$$ = 0        (ab=616)

=>$$a^3-b^3+\left(3\times\ 4\times\ 157\left(b-a\right)\right)$$    (154*4=616)

=> $$\left(a-b\right)\left(a^2+b^2+ab\right)\ =\ 3\times\ 4\times\ 157\left(a-b\right)$$

=> $$a^2+b^2+ab\ =\ 3\times\ 4\times\ 157$$

Adding ab=616 on both sides, we get

$$a^2+b^2+ab\ +ab=\ 3\times\ 4\times\ 157+616$$

=> $$\left(a+b\right)^2=\ 3\times\ 4\times\ 157+616$$ = 2500

=> a+b=50


View Video Solution

video

Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 30+ CAT previous papers with solutions PDF
  • Top 500 CAT Solved Questions for Free

Comments
Shivom Narula

3 years, 6 months ago

(a-b)^3=a^3-b^-3ab(a-b)
the formula applied above is incorrect.

cracku

Boost your Prep!

Download App