Question 70

Let the m-th and n-th terms of a geometric progression be $$\frac{3}{4}$$ and 12. respectively, where $$m < n$$. If the common ratio of the progression is an integer r, then the smallest possible value of $$r + n - m$$ is


Let the first term of the GP be "a" . Now from the question we can show that

$$ar^{m-1}=\frac{3}{4}$$    $$ar^{n-1}=12$$

Dividing both the equations we get $$r^{m-1-n+1}=\frac{1}{16}\ or\ r^{m-n}=16^{-1\ }or\ r^{n-m}=16$$

So for the minimum possible value we take Now give minimum possible value to "r" i.e -4 and n-m=2

Hence minimum possible value of r+n-m=-4+2=-2

Video Solution


Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 33+ CAT previous papers with video solutions PDF
  • Topic-wise Previous year CAT Solved Questions for Free

CAT Quant Questions | CAT Quantitative Ability

CAT DILR Questions | LRDI Questions For CAT

CAT Verbal Ability Questions | VARC Questions For CAT


Boost your Prep!

Download App