CAT 2021 Question Paper (Slot 3) Question 63

Question 63

If n is a positive integer such that $$(\sqrt[7]{10})(\sqrt[7]{10})^{2}...(\sqrt[7]{10})^{n}>999$$, then the smallest value of n is


Correct Answer: 6

Solution

$$(\sqrt[7]{10})(\sqrt[7]{10})^{2}...(\sqrt[7]{10})^{n}>999$$

$$(\sqrt[7]{10})^{1+2+...+n}>999$$

$$10^{\frac{1+2+...+n}{7}}>999$$

For minimum value of n,

$$\frac{1+2+...+n}{7}=3$$

1 + 2 + ... + n = 21

We can see that if n = 6, 1 + 2 + 3 + ... + 6 = 21.


View Video Solution


Create a FREE account and get:

  • All Quant CAT Formulas and shortcuts PDF
  • 30+ CAT previous papers with solutions PDF
  • Top 500 CAT Solved Questions for Free

Comments
cracku

Boost your Prep!

Download App