Question 29

Let x and y be positive real numbers such that
$$\log_{5}{(x + y)} + \log_{5}{(x - y)} = 3,$$ and $$\log_{2}{y} - \log_{2}{x} = 1 - \log_{2}{3}$$. Then $$xy$$ equals

Solution

We have, $$\log_{5}{(x + y)} + \log_{5}{(x - y)} = 3$$

=> $$x^2-y^2=125$$......(1)

$$\log_{2}{y} - \log_{2}{x} = 1 - \log_{2}{3}$$

=>$$\ \frac{\ y}{x}$$ = $$\ \frac{\ 2}{3}$$

=> 2x=3y   => x=$$\ \frac{\ 3y}{2}$$

On substituting the value of x in 1, we get

$$\ \frac{\ 5x^2}{4}$$=125

=>y=10, x=15

Hence xy=150

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App