Let S denotes the infinite sum $$2 + 5x + 9x^2 + 14x^3 + 20x^4 + ...$$ , where |x| < 1 and the coefficient of $$x^{n - 1}$$ is n( n + 3 )/2 , ( n = 1, 2 , . . . ) . Then S equals:
Let $$S = 2+5x+9x^2+....$$
$$S*x = 2x+5x^2+9x^3+...$$
$$S(1-x) = 2+3x+4x^2+...$$
$$S(1-x)*x = 2x+3x^2+4x^3+...$$
$$S(1-x)(1-x) = 2+x+x^2+x^3+... = 2+x/(1-x)$$
So, $$S = [2(1-x) + x]/(1-x)^3 => S = (2-x)/(1-x)^3$$
Create a FREE account and get: