Question 27

Let a, b, x, y be real numbers such that $$a^2 + b^2 = 25, x^2 + y^2 = 169$$, and $$ax + by = 65$$. If $$k = ay - bx$$, then

Solution

$$\left(ax+by\right)^2=65^2$$

$$a^2x^2\ +\ b^2y^2+\ 2abxy\ =\ 65^2$$
$$k = ay - bx$$

$$k^2\ =\ a^2y^2+b^2x^2-2abxy$$

$$(a^2 + b^2)(x^2 + y^2 )= 25* 169$$

$$a^2x^2+a^2y^2+b^2x^2+b^2y^2=\ 25\times\ 169$$

$$k^2=\ 65^2\ -\ \left(25\times\ 169\right)$$

k = 0

D is the correct answer.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App