Question 2

Three positive integers x, y and z are in arithmetic progression. If $$y-x>2$$ and $$xyz=5(x+y+z)$$, then z-x equals

Solution

Given x, y, z are three terms in an arithmetic progression.

Considering x = a, y = a+d, z = a+2*d.

Using the given equation x*y*z = 5*(x+y+z)

 a*(a+d)*(a+2*d) = 5*(a+a+d+a+2*d)

=a*(a+d)*(a+2*d)  = 5*(3*a+3*d) = 15*(a+d).

= a*(a+2*d) = 15.

Since all x, y, z are positive integers and y-x > 2. a, a+d, a+2*d are integers.

The common difference is positive and greater than 2.

Among the different possibilities are : (a=1, a+2d = 5), (a, =3, a+2d = 5), (a = 5, a+2d = 3), (a=15, a+2d = 1)

Hence the only possible case satisfying the condition is :

a = 1, a+2*d = 15.

x = 1, z = 15.

z-x = 14.

Video Solution

video

Create a FREE account and get:

  • All Quant CAT complete Formulas and shortcuts PDF
  • 35+ CAT previous year papers with video solutions PDF
  • 5000+ Topic-wise Previous year CAT Solved Questions for Free

cracku

Boost your Prep!

Download App