Expression : $$\sum_{i = 2}^{100} \frac{1}{log_{i}100!}$$
= $$\frac{1}{log_2 100!} + \frac{1}{log_3 100!} + \frac{1}{log_4 100!} +$$ ..... $$+ \frac{1}{log_{100} 100!}$$
We know that $$\frac{1}{log_b a} = log_a b$$
= $$log_{100!} 2 + log_{100!} 3 + log_{100!} 4 +$$ ..... $$+ log_{100!} 100$$
Also, $$log_a b + log_a c = log_a (b \times c)$$
= $$log_{100!} (2 \times 3 \times 4 \times 5 \times ..... \times 100)$$
= $$log_{100!} 100! = 1$$